
Physics 116C Solutions to the midterm practice problems Fall 2011

Problem 1

y′ − 2xy = 1, y(0) = 0. (1)

(a) Substituting y =
∑

n anx
n,

∞
∑

n=1

nanx
n−1 − 2

∞
∑

n=0

anx
n+1 = a1 +

∞
∑

n=0

[(n+ 2)an+2 − 2an]x
n+1 = 1, (2)

an+2 =
2

n+ 2
an =

4

n(n+ 2)
an−2 = . . . (3)

while from y(0) = 0 we get a0 = 0 and from the x0 term in (2) we have a1 = 1. This tells us that

a2n =
2

2n
a2n−1 =

4

2n(2n − 2)
a2n−4 = . . . =

2n

(2n)!!
a0 = 0; (4)

a2n+1 =
2

2n + 1
a2n−1 =

4

(2n + 1)(2n − 1)
a2n−3 = . . . =

2n

(2n + 1)!!
a1 =

2n

(2n + 1)!!
. (5)

Hence,

y(x) =
∞
∑

n=0

2n x2n+1

(2n+ 1)!!
. (6)

(b) This is a linear first order differential equation. First we solve the homogeneous equation

y′ − 2xy = 0 , (7)

y′

y
− 2x = 0 =⇒ log y = x2 + log c =⇒ y(x) = cex

2

. (8)

The general solution to the inhomogeneous equation will be given by the solution to the homogeneous
plus a particular solution to the inhomogeneous; the latter is given by

y0(x) = ex
2

∫

e−x2

dx . (9)

Recalling the definition of the error function,

erf(x) =
2√
π

∫ x

0
e−t2 dt , (10)

it follows that the general solution to the differential equation (7) is

y(x) = ex
2

[√
π

2
erf(x) + C

]

, (11)
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where C is an integration constant that is determined by the initial condition y(0) = 0. Since
erf(0) = 0, we deduce that C = 0 and conclude that

y(x) =

√
π

2
ex

2

erf(x) . (12)

One can check the series expansion. Inserting ex
2

=
∑∞

0 x2n/n! into (10) and integrating term
by term yields

√
π

2
erf(x) =

∞
∑

n=0

(−1)nx2n+1

(2n + 1)n!
. (13)

Multiplying this series with the series for ex
2

, one can check that the end result coincides with (6).

Problem 2

The associated Legendre functions Pm
n are defined as

Pm
n (x) = (1− x2)m/2 dm

dxm
Pn(x) (14)

Then

P 1
2n+1(x) =

√

1− x2P ′
2n+1(x) =

√

1− x2 · (2n + 1)P2n(x)− (2n+ 1)xP2n+1(x)

1− x2
(15)

P 1
2n+1(0) = (2n + 1)P2n(0) = (2n+ 1)

(−1)n(2n− 1)!!

2nn!
=

(−1)n(2n+ 1)!!

2nn!
(16)

where we have used the result for P2n(0) found in homework set #1, problem 12 (Boas, p. 615).

Problem 3

xy′′ + 2y′ − y = 0 (17)

(a) Using the method of Frobenius we insert the series y =
∑

n anx
n+s

∞
∑

n

(n+ s)(n+ s− 1)anx
n+s−1 + 2

∞
∑

n

(n + s)anx
n+s−1 −

∑

n

anx
n+s = 0 (18)

The a0x
s−1 coefficient gives the indicial equation:

s(s− 1) + 2s = 0 =⇒ s = 0,−1; (19)

Consider first the indicial root s = 0. The resulting recursion relation is then given by

n(n+ 1)an+1 + 2(n+ 1)an+1 − an = 0 =⇒ an+1 =
an

(n+ 2)(n + 1)
, (20)
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which yield

cn =
cn−1

(n+ 1) · n =
cn−2

(n+ 1) · n · n · (n− 1)

=
cn−3

(n+ 1) · n · n · (n− 1) · (n − 1) · (n− 2)
= · · · = c0

(n+ 1)!n!
. (21)

Hence, the first solution is proportional to

y1(x) =

∞
∑

n=0

xn

(n+ 1)!n!
. (22)

(b) The two roots of the indicial equation differ by an integer number. If we examine the second
indicial root s = −1, the resulting recursion relation is given by

n(n− 1)an+1 + 2nan+1 − an = 0 =⇒ an+1 =
an

n(n+ 1)
, (23)

which yields that exact same series as the one obtained in part (a). This happens because the
equation is Fuchsian and the two roots s1, s2 differ by an integer. We still have to find another
linearly independent solution. Using Fuchs theorem, we write the other solution as

y2(x) = y1(x) lnx+

∞
∑

n=0

bnx
n−1 (24)

Plugging this back into the differential equation, one can obtain a recursion relation for the bn.
Alternatively, one can make use of the class handout entitled Series solutions to a second order

linear differential equation with regular singular points. Either method is straightforward (though
somewhat tedious). The end result is:

y2(x) = y1(x) lnx+
1

x

[

1−
∞
∑

n=1

1

n! (n − 1)!

(

1

n
+ 2

n−1
∑

k=1

1

k

)

xn

]

. (25)

Problem 4

y′′ + e2xy = 0 (26)

If we change variables, z = ex, we have

d

dx
y =

dz

dx

d

dz
y(z) = zy′(z) (27)

d2

dx2
y =

d

dx
y′(x) =

dz

dx

d

dz
(zy′(z)) = z2y′′(z) + zy′(z) (28)

z2y′′(z) + zy′(z) + z2y(z) = 0 (29)

This is Bessel’s equation with p = 0, so the two linearly independent solutions are the Bessel
functions of the first and second kind:

y(x) = AJ0(e
x) +BN0(e

x) (30)
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Problem 5

Obtain a general expression for Hn(0), for n non-negative integer:

We use the generating function for the Hermite polynomials:

Φ(x, h) = e2xh−h2

=

∞
∑

n=0

Hn(x)
hn

n!
. (31)

To find the polynomials in 0, we look at

Φ(0, h) = e−h2

=
∑

n

Hn(0)
hn

n!
=
∑

m

(−1)mh2m

m!
(32)

so that

H2m(0) = (−1)m
(2m)!

m!
, H2m+1(0) = 0. (33)

Alternatively, we can use the recursion relation given by eq. (22.17)(b) on p. 609 of Boas,

Hn+1(x) = 2xHn(x)− 2nHn−1(x) . (34)

Setting x = 0 yields,

Hn+1(0) = −2nHn−1(0) = 2n · (2n − 2)Hn−3(0) = · · · (35)

Using the fact that H0(x) = 1 and H1(x) = 2x, it follows that H0(0) = 1 and H1(0) = 0. Clearly,
(35) implies that H2n+1(0) = 0 for any non-negative integer n. If we rewrite (35) as

H2n(0) = −2(2n − 1)H2n−2(0) = (−2)2(2n − 1)(2n − 3)H2n−4(0) = · · · , (36)

and use H0(0) = 1, then it immediately follows that

H2n(0) = (−1)n2n(2n− 1)!! , H2n+1(0) = 0. (37)

One can check that

2n(2n − 1)!! =
(2n)!

n!
, (38)

so that the two results above coincide as expected.

Problem 6

Let Tn(cos θ) = cosnθ. one can write Tn in the form

Tn(cos θ) =

n
∑

m=1

am cosm θ (39)

The polynomials Tn(x) are called Chebyshev polynomials.
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(a) evaluate T0, T1, T2:

T0(cos θ) = 1 =⇒ T0(x) = 1 ; (40)

T1(cos θ) = cos θ =⇒ T1(x) = x ; (41)

T2(cos θ) = cos 2θ = 2cos2 θ − 1 =⇒ T2(x) = 2x2 − 1. (42)

(b) Note that y(θ) = Tn(cos θ) satisfy

y′′ + n2y = 0 (43)

From this we can find the equation that Tn(x) satisfies:

x = cos θ ,
d

dθ
=

dx

dθ

d

dx
= −

√

1− x2
d

dx
; (44)

d2

dθ2
=

(

dx

dθ

d

dx

)(

dx

dθ

d

dx

)

=

(

√

1− x2
d

dx

)2

= (1− x2)
d2

dx2
− x

d

dx
; (45)

y′′ + n2y = 0 : (46)

=⇒ (1− x2)T ′′
n (x)− xT ′

n(x) + n2Tn(x) = 0 (47)

(c) The differential equation for Tn(x) (47) can be written as a Sturm-Liouville problem over the
interval [−1, 1]:

√

1− x2
d

dx

[

√

1− x2T ′
n

]

+ n2Tn = 0 =⇒ d

dx

[

√

1− x2 T ′
n

]

+
n2

√
1− x2

Tn = 0 (48)

if we compare it to the standard form of a Sturm-Liouville problem, [A(x)y′]′+[λB(x)+C(x)]y = 0,
we find

A(x) =
√

1− x2, B(x) =
1√

1− x2
, C(x) = 0 , λ = n2; (49)

Moreover, the Sturm-Liouville boundary condition,

A(x)
[

y′n(x)ym(x)− y′m(x)yn(x)
]

∣

∣

∣

∣

1

−1

= 0 , (50)

is automatically satisfied when yn is a solution to the Chebyshev differential equation with λ = n2,
since A(±1) = 0, whereas the solutions yn(x) are non-singular at x = ±1 since they are polynomials
of degree n.

(d) In this problem, yn(x) = Tn(x) is a real polynomial of degree n and the weight function is
B(x) = (1 − x2)−1/2. Hence, using the orthogonality relations proved in class for the solutions to
the Sturm-Liouville problem, we conclude that the orthogonality condition satisfied by Tn is given
by

∫ 1

−1
Tn(x)Tm(x)

dx√
1− x2

= 0 , for n 6= m. (51)
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Problem 7

d2y

dx2
+ k2y = 0, −ℓ < x < ℓ , y(−ℓ) = y(ℓ) (52)

(a) To show that the Sturm-Liouville boundary conditions are satisfied, we must make use of the
eigenfunctions found in part (c) below,

yn(x) =
1√
2ℓ

eiπnx/ℓ , for n = 0,±1,±2, . . . (53)

The Sturm-Liouville boundary condition for this problem is:

[

y′n(x)ym(x)− y′m(x)yn(x)
]

∣

∣

∣

∣

ℓ

−ℓ

= 0 , (54)

which are clearly satisfied by the yn(x) given above, since both yn(x) and y′(x) are periodic functions
with period 2ℓ.

(b) The function eikx solves the equation; to satisfy the periodic boundary condition, we must
have

eikℓ = e−ikℓ =⇒ k =
π

ℓ
n, n = 0,±1,±2, .... (55)

(c) This set forms an orthonormal set of functions over the interval −ℓ < x < ℓ:

∫ ℓ

−ℓ
e−iπnx/ℓeiπmx/ℓdx =

{

0, for n 6= m
2ℓ, for n = m

(56)

The set of orthonormal functions is then
{

1√
2ℓ
eiπnx/ℓ, n = 0,±1,±2, . . .

}

(d) Given that the eigenfunctions are a complete orthogonal set, we can expand any function in
terms of {eikx}: for f(x) = x2, we have

f(x) = x2 =

∞
∑

n=−∞

bne
inπx/ℓ , (57)

which yields
∫ ℓ

−ℓ
eimπx/ℓ ·

∑

n

bne
inπx/ℓdx = 2ℓbm =

∫ ℓ

−ℓ
x2eimπx/ℓdx

=
ℓ

imπ
x2eimπx/ℓ

∣

∣

∣

∣

ℓ

−ℓ

− 2
ℓ

imπ

∫ ℓ

−ℓ
xeimπx/ℓdx

=
4ℓ3

m2π2
(−1)m (58)

where the result holds for m 6= 0; b0 can be calculated directly and it is 1
3 l

2. Finally, x2 can be
expanded in this basis in the following form:

f(x) = x2 =
1

3
ℓ2 +

2ℓ2

π2

∞
∑

m=1

(−1)m

m2
eimπx/ℓ (59)
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(e) If in the previous expression we set x = ℓ, we have

l2 =
1

3
l2 +

2ℓ2

π2

∑

n=1

1

n2
=

1

3
ℓ2 +

4ℓ2

π2

∞
∑

n=1

1

n2
(60)

Then we can find the infinite sum

∞
∑

n=1

1

n2
=

π2

6
(61)

We can note that this is a particular value of the Riemann Zeta function ζ(s) =

∞
∑

n=1

1

ns
.

Problem 8

Consider a rectangular plate 0 < x < 1, 0 < y < 2 with boundary condition T (x, 2) = 0 and
T (x, 0) = 1− x.

(a) Find the steady state temperature with T (0, y) = T (1, y) = 0.

In class, we showed that the steady state temperature distribution for the plate with T (x, 2) =
T (0, y) = T (1, y) = 0 is given by

T (x, y) =

∞
∑

n=1

cn sinh [nπ(y − 2)] sin(nπx) , (62)

as this is the most general solution to the two-dimensional Laplace equation that satisfies the stated
boundary conditions. To determine the cn, we impose the final boundary condition, T (x, 0) = 1−x,
which yields

1− x = − sinh (2nπ)

∞
∑

n=1

cn sin(nπx) . (63)

This is a Fourier sine series. The cn are then determined by

cn =
−2

sinh (2nπ)

∫ 1

0
(1− x) sin(nπx) dx =

−2

nπ sinh (2nπ)
. (64)

Thus,

T (x, y) =
2

π

∞
∑

n=1

sinh [nπ(2− y)] sin(nπx)

n sinh(2nπ)
. (65)

(b) Find the steady state temperature if the sides x = 0, x = 1 are insulated.
The calculation of part (a) is modified since now we have insulated sides x = 0 and x = 1 which

means that
(

∂T

∂x

)
∣

∣

∣

∣

x=0

=

(

∂T

∂x

)
∣

∣

∣

∣

x=1

= 0 , (66)
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which replaces the previous boundary conditions T (0, y) = T (1, y) = 0. Then the steady state
temperature distribution for the plate is given by:

T (x, y) = b0(y − 2) +

∞
∑

n=1

bn sinh [nπ(y − 2)] cos(nπx) , (67)

as this is the most general solution to the two-dimensional Laplace equation that satisfies the stated
boundary conditions. Note that we have explicitly included the n = 0 part of the sum. When
solving Laplace’s equation via separation of variables, we write T (x, y) = X(x)Y (y). For the case
of n = 0, we have X ′′ = Y ′′ = 0. To satisfy the boundary conditions, the solution for the n = 0
part of the sum must be X(x)Y (y) = b0(y− 2). To determine the bn, we impose the final boundary
condition, T (x, 0) = 1− x, which yields

1− x = −2b0 − sinh (2nπ)
∞
∑

n=1

bn cos(nπx) . (68)

This is a Fourier cosine series. The bn are then determined by

− 2b0 =

∫ 1

0
(1− x)dx = 1

2 , (69)

bn =
−2

sinh (2nπ)

∫ 1

0
(1− x) cos(nπx) dx =

−2[1− (−1)n]

(nπ)2 sinh (2nπ)
, for n = 1, 2, 3, . . . . (70)

Thus,

T (x, y) = 1
4(2− y) +

4

π2

∑

n odd

sinh [nπ(2− y)] cos(nπx)

n2 sinh(2nπ)
. (71)

Problem 9

A bar of length 2 is initially at 0◦. For time t ≥ 0, the x = 0 end of the bar is insulated and the
x = 2 end is held at 100◦. Find the time-dependent temperature distribution of the bar.

In the absence of information about the extent of the bar in the y direction, we will assume that
the length in the y direction is much larger than length 2. In this case, we may neglect any end
effects and assume that heat flows only in the x-direction. The boundary conditions and the initial
conditions for the temperature u(x, t) are:

u(x, 0) = 0 , u(0, t) = 0 , u(2, t) = 100 , (72)

and u(x, t) satisfies the heat flow equation

∇2u =
1

α2

∂u

∂t
. (73)

The easiest way to solve this problem is to define a new quantity,

v(x, t) = u(x, t)− 50x . (74)

Clearly, v(x, t) also satisfies the heat flow equation, since the second space derivative and the first
time derivative of the added term −50x vanishes. Moreover, the boundary conditions and the initial
conditions for v(x, t) are:

v(x, 0) = −50x , v(0, t) = 0 , v(2, t) = 0 . (75)
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Thus, we can immediately use eq. (3.12) on p. 630 of Boas to write:

v(x, t) =

∞
∑

n=1

bne
−(nπα/2)2t sin

(nπx

2

)

, (76)

after putting l = 2 for the length of the bar. Applying the initial condition v(x, 0) = −50x then
yields

− 50x =

∞
∑

n=1

bn sin
(nπx

2

)

, (77)

This is a Fourier sine series. The coefficients bn are then obtained from

bn =

∫ 2

0
(−50x) sin

(nπx

2

)

dx . (78)

Defining a new variable y = 1
2nπx, it follows that

bn = − 200

(nπ)2

∫ nπ

0
y sin y dy = − 200

(nπ)2
(sin y − y cos y)

∣

∣

∣

∣

nπ

0

=
200

nπ
(−1)n . (79)

Inserting this result into (76) and using (74), we end up with:

u(x, t) = 50x+
200

π

∞
∑

n=1

(−1)n

n
e−(nπα/2)2t sin

(nπx

2

)

. (80)

Problem 10

A string of length ℓ has zero initial velocity and a given displacement y0(x). Find the displacement
as a function of x and t.

y0(x) =











4hx/ℓ , for 0 ≤ x ≤ 1
4ℓ ,

2h− 4hx/ℓ , for 1
4ℓ ≤ x ≤ 1

2ℓ ,

0 , for 1
2ℓ ≤ x ≤ ℓ ,

(81)

with the boundary condition y(0, t) = 0, y′(l, t) = 0. The wave equation is

∂2y

∂2x
=

1

v2
∂2y

∂2t
; (82)

separating the variables y(x, t) = X(x)T (t), the solution is

y(x, t) =

{

sin kx
cos kx

}

×
{

sinωt
cosωt

}

, ω = kv. (83)

Now we must apply the given boundary and initial conditions. Because y(0, t) = 0, the cosine
does not contribute. At the free end, we have y′(ℓ, t) = 0, which implies that cos kℓ = 0, so that
kn = (n + 1

2 )π. The most general solution before applying the initial conditions are:

y(x, t) =
∞
∑

n=0

sin

[

(n+ 1
2)πx

ℓ

] {

An cos

[

(n + 1
2 )πvt

ℓ

]

+Bn sin

[

(n+ 1
2)πvt

ℓ

]}

(84)
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As the string is initially not moving, Bn = 0. We find An from the initial configuration of the string,

y(x, 0) = y0(x) =

∞
∑

n=0

An sin
(n+ 1

2)πx

ℓ
. (85)

This is a Fourier sine series. The coefficients An are obtained as follows:

An =
2

ℓ

∫ ℓ

0
y0(x) sin

[

(n+ 1
2)πx

ℓ

]

=
8h

ℓ2

∫ ℓ/4

0
x sin

[

(n+ 1
2)πx

ℓ

]

dx+
4h

ℓ

∫ ℓ/2

ℓ/4

(

1− 2x

ℓ

)

sin

[

(n+ 1
2)πx

ℓ

]

dx

=
128h sin2

[

1
8(n+ 1

2)π
]

sin
[

1
4(n+ 1

2)π
]

(2n+ 1)2π2
. (86)

Plugging in Bn = 0 and An obtained above into (84) then yields

y(x, t) =
128h

π2

∞
∑

n=0

sin2
[

1
8 (n+ 1

2)π
]

sin
[

1
4(n+ 1

2 )π
]

(2n + 1)2
sin

[

(n+ 1
2)πx

ℓ

]

cos

[

(n+ 1
2)πvt

ℓ

]

. (87)

Problem 11

A square membrane of side ℓ is distorted into the shape f(x, y) = xy(ℓ − x)(ℓ − y) and released.
Following problem 9 of homework #5, we first separate the space and time variables by writing
z(x, y, t) = F (x, y)T (t), which yields

∇2F +K2F = 0 T̈ +K2v2T = 0 . (88)

We now separate the variables x, y and find the solutions for a membrane fixed at its sides:

X ′′(x)

X
+

Y ′′(y)

Y
+K2 = 0 =⇒

{

X ′′ + k2xX = 0
Y ′′ + k2yY = 0

, k2x + k2y = K2 (89)

X(x)Y (y) = sin
nπx

ℓ
sin

mπy

ℓ
(90)

Z(x, y, t) =
∑

nm

sin
nπx

ℓ
sin

mπy

ℓ
(Anm cosωnmt+Bnm sinωnmt) , ωnm = Knmv, (91)

where Knm =
√

k2x(n) + k2y(m) = π
√
n2 +m2/ℓ. Given that the membrane is initially not moving we

have Bnm = 0. Due to the form of the initial shape of the membrane, the x and y oscillations can
be treated separately. Indeed, we can write Anm = AnBm, where An and Bm are determined via
the initial conditions. For example, An is obtained as follows:

An =
2

ℓ

∫ ℓ

0
x(ℓ− x) sin

nπx

ℓ
dx =

2

ℓ

ℓ3

π3

∫ π

0
y(π − y) sinny dy =

4ℓ2

π3n3
[1− (−1)n] . (92)

We see that only modes with odd n contribute. The computation of Bm is almost identical to
the one just given, and one finds that only modes with odd m contribute. Thus, the shape of the
membrane at any time t > 0 is then given by

z(x, y, t) =
64ℓ4

π6

∑

odd n

∑

odd m

1

n3m3
sin

nπx

ℓ
sin

mπy

ℓ
cos

[

πv(n2 +m2)1/2t

ℓ

]

. (93)
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