
Physics 116C Solutions to the final exam practice problems Fall 2011
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A long cylinder has been cut into quarter cylinders that are insulated from each other. Alternate
quarter cylinders are held at potentials +100 and −100. Find the electrostatic potential inside the
cylinder.

We have to solve Laplace’s equation with the following boundary conditions:

~∇
2V (x, y) = 0 , V (a, θ) =

{

100, 0 < θ < π
2 , π < θ < 3π

2 ,

−100, π
2 < θ < π, 3π

2 < θ < 2π.
(1)

Because we have a long cylinder, there will be no dependence on the z direction. The Laplacian in
two dimensions is

~∇
2 =

1

r

∂

∂r

(

r
∂

∂r

)

+
1

r2
∂2

∂θ2
. (2)

We separate the equation in a radial and angular equation:

V (r,Θ) = R(r)Θ(θ) =⇒ r

R
(rR′)′ = −Θ′′

Θ
= n2, (3)

Θ(θ) = e±inθ , r2R′′ + rR′ − n2R = 0. (4)

n must be an integer so that the function is single valued, Θ(θ + 2π) = Θ(θ), while the radial
equation is solved by r±n. The most general solution is then

V =

∞
∑

n=0

[

rn(An sinnθ +Bn cosnθ) + r−n(A′
n sinnθ +B′

n cosnθ)
]

(5)

Now we have to apply the boundary conditions (1): because we are looking for a solution inside
the cylinder, we will put A′ = B′ = 0 to avoid divergent behaviors: we are left with

V (a, θ) =
∞
∑

n=0

an [An sinnθ +Bn cosnθ] (6)

First, we see that the boundary conditions are odd around θ = 0; then we will put Bn = 0 for all n
because the cosine is even. Finally, we have

anAn =
1

π

∫ 2π

0
V (a, θ) sin nθ dθ

=
100

π

∫ π/2

0
sinnθ dθ − 100

π

∫ π

π/2
sinnθ dθ +

100

π

∫ 3π/2

π
sinnθ dθ − 100

π

∫ 2π

π/2
sinnθ dθ

=
100

nπ
[2− 2 cos(nπ/2) + 2 cos nπ − 2 cos(3πn/2)] =

200

nπ
(1 + cosnπ)[1− cos(nπ/2)] (7)

If we substitute n = 2k + 1, the expression is zero. For n = 2k, we have 400
2kπ (1 − (−1)k), so that

only the odd k contribute. Finally, our potential is

V (r, θ) =
400

π

∑

odd k

1

k

(r

a

)2k
sin 2kθ (8)
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Find the steady-state temperature in the region between two spheres with radii r = 1 and r = 2,
respectively, if the surface of the outer sphere has its upper half held at 100◦ and its lower half at
−100◦ and these temperatures are reversed for the inner sphere.

We have to solve Laplace’s equation, ~∇2u(r, θ, φ) = 0, with the following boundary conditions:

u(2, θ, φ) =

{

100, 0 < θ < π/2,
−100, π/2 < θ < π ,

u(1, θ, φ) =

{

−100, 0 < θ < π/2,
100, π/2 < θ < π .

(9)

The separation of variables in Laplace’s equation proceeds as always: once we take u = R(r)Θ(θ)Φ(φ),
we find

1

R
(r2R′)′ +

1

Θ

1

sin θ
(sin θΘ′)′ +

1

Φ

1

sin2 θ
Φ′′ = 0 (10)

which gives

u(r, θ, φ) =

{

rl

r−l−1

}

· Pm
l (cos θ) ·

{

sinmφ
cosmφ

}

(11)

Because the boundary conditions have no φ dependence, we will have no φ dependence in the
solution, that is, m = 0 and the Pm

l reduce to Pl, the Legendre polynomials. Our solution will be
given by

u(r, θ) =

∞
∑

l=0

(alr
l + blr

−l−1)Pl(cos θ) (12)

Note that we have kept both the positive and the negative powers of r, since the range of r relevant
for this problem is 1 ≤ r ≤ 2 which excludes both r = 0 and r = ∞. We first apply the boundary
conditions at r = 1:

u(1, θ, φ) =
∑

l

(al + bl)Pl(cos θ) . (13)

We can solve for al + bl by multiplying both sides of this equation by Pl′(cos θ) and integrating over
−1 ≤ cos θ ≤ 1. Using the orthogonality relation of the Legendre polynomials, it follows that

al + bl =
2l + 1

2

∫ 1

−1
u(1, θ, φ)Pl(cos θ)d cos θ = 100

2l + 1

2

(

−
∫ 1

0
Pl(x)dx+

∫ 0

−1
Pl(x)dx

)

=

{

−100(2l + 1)
∫ 1
0 Pl(x)dx , for odd l,

0 , for even l,
(14)

where we have used the fact that Pl is an even function of x when l is even and an off function of x
when l is odd. Making use of the result of problem 12-23.3 on p. 615 of Boas,

cn ≡
∫ 1

0
P2n+1(x)dx =

(−1)n(2n − 1)!!

2n+1(n+ 1)!
, for n = 0, 1, 2, 3, . . . , (15)

so that

a2n+1 + b2n+1 = −100(4n + 3)cn , (16)

a2n + b2n = 0 . (17)
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Next, we apply the boundary conditions at r = 2:

u(2, θ, φ) =
∑

l

(al2
l + bl2

−l−1)Pl(cos θ) . (18)

We solve for al2
l + bl2

−l−1 following the same procedure as above.

al2
l + bl2

−l−1 =
2l + 1

2

∫ 1

−1
u(2, θ, φ)Pl(cos θ)d cos θ = 100

2l + 1

2

(∫ 1

0
Pl(x)dx−

∫ 0

−1
Pl(x)dx

)

=

{

100(2l + 1)
∫ 1
0 Pl(x)dx , for odd l,

0 , for even l.
(19)

Using (15),

22n+1a2n+1 + 2−2n−2b2n+1 = 100(4n + 3)cn , (20)

22na2n + 2−2n−1b2n = 0 . (21)

Eqs. (17) and (21) imply that a2n = b2n = 0. Adding eqs. (16) and (20) yields

a2n+1

(

1 + 22n+1
)

= −b2n+1

(

1 +
1

22n+2

)

. (22)

which yields

a1 = − 5
12b1 , a3 = − 17

144b3 , etc. (23)

We then use (16) to obtain a2n+1 and b2n+1 separately. For example, noting that c0 = 1
2 and

c1 = −1
8 , it follows that:

a1 =
750
7 , b1 = −1800

7 , a3 = −2975
254 , b3 =

12600
127 , etc. (24)

For general odd values of ℓ = 2n+ 1 = 1, 3, 5, . . .,

al = −100(2l + 1)cn
1 + 2l+1

1− 22l+1
,

bl = 100(2l + 1)cn
22l+1 + 2l+1

1− 22l+1
,

where cn is given by (15). For even values of l, al = bl = 0. Inserting these values back in (12) yields
the solution to the problem.

3

Using the Green function technique, solve Poisson’s equation,

~∇
2φ(~r) = f(~r) = e−r/a (25)

under the assumption that φ(~r) → 0 as r → ∞ The parameter a is a constant with units of length.

Given Poisson’s equation, we can solve it by using its Green function,

φ(~r) = − 1

4π

∫

f(~r ′)

|~r − ~r ′|d
3r′ = − 1

4π

∫

e−r′/a

|~r − ~r ′|d
3r′ . (26)
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We insert the expansion

1

|~r − ~r ′| = 4π

∞
∑

ℓ=0

1

2ℓ+ 1

r′ℓ

rℓ+1

ℓ
∑

m=−ℓ

Y m
ℓ (θ, φ)Y m

ℓ (θ′, φ′)∗ , for r > r′ , (27)

and

1

|~r − ~r ′| = 4π

∞
∑

ℓ=0

1

2ℓ+ 1

rℓ

r′ℓ+1

ℓ
∑

m=−ℓ

Y m
ℓ (θ, φ)Y m

ℓ (θ′, φ′)∗ , for r < r′ , (28)

into (26), which yields

φ(~r) = −
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

1

2ℓ+ 1
Y m
ℓ (θ, φ)

∫ r

0
r′2dr′

r′ℓ

rℓ+1
e−r′/a

∫

Y m
ℓ (θ′, φ′)∗dΩ′

−
∞
∑

ℓ=0

ℓ
∑

m=−ℓ

1

2ℓ+ 1
Y m
ℓ (θ, φ)

∫ ∞

r
r′2dr′

rℓ

r′ℓ+1
e−r′/a

∫

Y m
ℓ (θ′, φ′)∗dΩ′ , (29)

after using d3r′ = r′ 2dr′dΩ′. The integral over solid angles is trivial using the orthonomality relation,

∫

Y m
ℓ (θ′, φ′)Y m′

ℓ′ (θ′, φ′)∗dΩ′ = δℓℓ′δmm′ . (30)

If we set ℓ = m = 0 in the integral above, the Y00(θ
′, φ′) = 1/

√
4π, and we conclude that

∫

Y m
ℓ (θ′, φ′)∗dΩ′ =

√
4πδℓ0δm0 . (31)

Hence, only the ℓ = m = 0 term in (29) survives, and we end up with

φ(~r) = −
{

1

r

∫ r

0
r′2e−r′/adr′ +

∫ ∞

r
r′e−r′/adr′

}

. (32)

The integrals are elementary, and the final result is:

φ(~r) =
1

r
e−r′/a

[

ar′ 2 + 2a2r′ + 2a3
]

∣

∣

∣

∣

∣

r

0

+ e−r′/a
[

r′a+ a2
]

∣

∣

∣

∣

∣

∞

r

=
1

r
e−r/a

[

ar2 + 2a2r + 2a3
]

− 2a3

r
− e−r/a

[

ra+ a2
]

= a2e−r/a − 2a3

r

[

1− e−r/a
]

. (33)

One can check this result by verifying that

~∇
2φ(~r) =

d2φ

dr2
+

2

r

dφ

dr
= e−r/a . (34)
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4

Consider a metal place covering the first quadrant. The edge along the y axis is insulated and the
edge along the x axis has a fixed temperature profile given by:

u(x, 0) =

{

100(2 − x), for 0 < x < 2,
0, for x > 2.

(35)

Find the steady-state temperature distribution as a function of x and y. You may leave your final
answer as an integral.

To find the steady-state temperature, we solve Laplace’s equation with the given boundary condition
(35) and the condition ∂u

∂x(0, y) = 0. Solving Laplace’s equation by separation of variables gives

u = X(x)Y (y) =⇒ X ′′

X
= −Y ′′

Y
= −k2 =⇒ X =

{

cos kx
sin kx

, Y =

{

e−ky

eky
, (36)

where k ≥ 0 (since changing the sign of k does not produce any new solutions). We eliminate the
eky solution because we are searching for a solution which does not blow up at large y; because
∂u
∂x(0, y) = 0, we do not take the sin kx solution either. Our solution will be given by a linear
combination of cos kxe−ky for each possible value of k; not having any other condition to set k to a
discrete set of values, we can take an integral sum:

u(x, y) =

∫ ∞

0
B(k) cos kx e−kydk (37)

To find B, we apply condition (35):

u(x, 0) =

∫ ∞

0
B(k) cos kx dk =

{

100(2 − x), for 0 < x < 2,
0, for x > 2.

(38)

Hence,

B(k) =
2

π

∫ ∞

0
u(x, 0) cos kx dx =

200

π

∫ 2

0
(2− x) cos kx dx

=
200

π

[

(2− x)
sin kx

k

∣

∣

∣

∣

2

0

+
1

k

∫ 2

0
sin kx

]

=
200

π

1

k2
(1− cos 2k), (39)

The solution is thus given by

u(x, y) =
200

π

∫ ∞

0

1− cos 2k

k2
cos kx e−kydk . (40)

REMARK: In problems where the parameter k takes on only discrete values, one had to treat the
k = 0 separately. There is no need to do that in this problem. In fact, one can easily check that
(39) yields

lim
k→0

B(k) =
400

π
. (41)

The k = 0 term is automatically included in the integral expression given in (40).
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5

Consider the motion of a semi-infinite string with an external time-dependent force acting on it
given by

F (t) = cosωt, t ≥ 0

where ω is a constant. One end of the string is kept fixed while the other end is allowed to move
freely in the vertical direction. Assume that at t = 0, the string is initially at rest in its equilibrium
position, i.e.,

y(x, 0) = 0,
∂y

∂t
(x, 0) = 0 (42)

The displacement of the string y(x, t) is governed by the inhomogeneous wave equation,

∂2y

∂t2
= v2

∂2y

∂x2
+ F (t) (43)

(a) What are the relevant boundary conditions for this problem at x = 0 and x = ∞?

The boundary conditions in x = 0 are those given by the string being fixed y(0, t) = 0 for all values
of t ≥ 0. At any given time t ≥ 0, the slope of the string must vanish at infinity, where the sting is
unconstrained (this is the analog of the insulated end for heat flow). That is,

lim
x→∞

∂y

∂x
(x, t) = 0. (44)

(b) Solve this differential equation using method of Laplace transforms. Show that the Laplace
transformation of the inhomogeneous wave equation yields an ordinary differential equation. Trans-
form the boundary conditions and then solve the resulting differential equation. Finally, apply the
relevant inverse Laplace transforms to obtain the final result.

Consider the Laplace transform with respect to the variable t,

L(y) = Y (x, p) =

∫ ∞

0
y(x, t)e−ptdt (45)

The properties of the Laplace transformation give

L

(

∂y

∂t

)

= pY − y(x, t = 0) , L

(

∂2y

∂t2

)

= p2Y − p

(

∂y

∂t

)

t=0

− y(x, t = 0) = p2Y, (46)

L

(

∂2y

∂x2

)

=
∂2Y

∂x2
, L(cos ωt) =

p

p2 + ω2
, (47)

where we have used the initial conditions given in (37). Thus, the wave equation (43) is transformed
into

p2Y = v2
d2Y

dx2
+

p

p2 + ω2
(48)

This is a simple ordinary differential equation in x (where p is a constant parameter). The most
general solution can be determined by inspection,

Y (x, p) = Aepx/v +Be−px/v +
1

p(p2 + ω2)
, (49)
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where A and B are constants that will be fixed by the boundary conditions.
The Laplace-transformed boundary conditions are:

Y (0, p) = 0, lim
x→∞

dY

dx
= 0 . (50)

The solution for Y is therefore given by

Y (x, p) =
1− e−px/v

p(p2 + ω2)
. (51)

We now have to perform an inverse Laplace transformation to obtain the desired solution y(x, t).
The first step is to rewrite the denominator of (51) by using the method of partial fractions,

1

p(p2 + ω2)
=

1

ω2

[

1

p
− p

p2 + ω2

]

. (52)

Using entries L1 and L3 of the Table of Laplace Transforms given on p. 469 of Boas, we deduce the
following inverse Laplace transform,

L−1

(

1

p
− p

p2 + ω2

)

= 1− cosωt = 2 sin2(12ωt) . (53)

Next, entry L24 of the Table of Laplace Transforms given on p. 470 of Boas yields1

L−1

(

e−x/v

p

)

= Θ(vt− x) =

{

1 , if x < vt ,

0 , if x > vt .
(54)

Finally, using entry L28 of the Table of Laplace Transforms with g(t) = cosωt yields,

L−1

(

pe−x/v

p2 + ω2

)

= cosω(t− x/v)Θ(vt− x) =







cosω(t− x/v) , if x < vt ,

0 , if x > vt .
(55)

Putting it all together,

y(x, t) = L−1[Y (x, p)] =
1

ω2

{

2 sin2(12ωt)−Θ(vt− x) [1− cosω(t− x/v)]
}

, (56)

which we can rewrite as

y(x, t) =
2

ω2

{

sin2(12ωt)−Θ(vt− x) sin2[12ω(t− x/v)]
}

. (57)

Explicitly, the above result corresponds to

y(x, t) =











2
ω2

{

sin2(12ωt)− sin2[12ω(t− x/v)]
}

, if x < vt ,

2
ω2 sin

2(12ωt) , if x > vt .

(58)

Note that the two cases agree on the boundary when x = vt. The form of the above solution
demonstrates that a signal induced by the external harmonic force propagates along the string with
velocity v.

1I prefer to use Θ for the Heaviside step function rather than u, which is used by Boas in entry L24 of the table.
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6

Suppose you have two quarters and a dime in your left pocket and two dimes and three quarters in
your right pocket. You select a pocket at random and from it a coin at random.

(a) What is the probability that the coin you selected is a dime?

There is a probability 1
2 to get each of the pockets, and then a probability 1

3 of getting any coin
in the left pocket and a probability of 1

5 of getting any coin from the right pocket. The probability
that we get a dime is

P (D) =
1

2
· 1
3
+

1

2
· 2
5
=

11

30
(59)

(b) Let x be the amount of money you selected. What is the expectation value, E(x)?

We compute the expected value in cents. Let A be the event where a quarter is selected and D
be the event where a dime is selected. Then,

E(x) = 25 · P (Q) + 10 · P (D) = 25 · 19
30

+ 10 · 11
30

= 19.5 (60)

(c) Suppose you selected a dime in part (a). What is the probability that it came from your
right pocket?

This is a conditional probability. Let R be the event where the coin comes from the right pocket,
and let D be the event that the coin drawn is a dime. Then, the probability that the coin came
from your right pocket is P (R|D) which is given by

P (R|D) =
P (R ∩D)

P (D)
, (61)

using Bayes’ formula. Using (59), the probability for events R and D is given by

P (R ∩D) =
1

2
· 2
5
=

1

5
. (62)

Hence,

P (R|D) =
1/5

11/30
=

6

11
. (63)

The same result can be obtained by denoting by DL the event that a dime is drawn from the left
pocket and by DR the event that the dime is drawn from the right pocket. Then, the calculation of
part (a) shows that

P (DL) =
1

2
· 1
3
=

1

6
and P (DR) =

1

2
· 2
5
=

1

5
. (64)

As expected, P (D) = P (DL) + P (DR) = 11/30. Then, if you select a dime, the probability that it
came from your right pocket is simply

P (DR)

P (DL) + P (DR)
=

1/6

11/30
=

6

11
, (65)

in agreement with (63).
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(d) Suppose you do not replace the dime, but select another coin which is also a dime. What is
the probability that this second coin came from your right pocket?

Let us denote by DR the event where a dime is drawn from the right pocket at by DL the event
where the dime is drawn from the left pocket. Then,

P (DD) = P (DLDR) + P (DRDL) + P (DRDR) . (66)

Note that P (DLDL) = 0 since the left pocket contains only one dime. The corresponding probabil-
ities are straightforward:

P (DLDR) =
1

2
· 1
3
· 1
2
· 2
5
=

1

30
, (67)

P (DRDL) =
1

2
· 2
5
· 1
2
· 1
3
=

1

30
, (68)

P (DRDR) =
1

2
· 2
5
· 1
2
· 1
4
=

1

40
. (69)

In the last computation, we noted that given that the first dime came from the right pocket, the
second pocket is then left with three quarters and a dime, meaning that there is only a one in four
chance that a coin drawn from the right pocket would be a dime. Hence,

P (DD) =
1

30
+

1

30
+

1

40
=

11

120
. (70)

Let R2 be the event that the second coin is drawn from the right pocket. Then if two dimes are
drawn without replacement, then the probability that the second dime comes from your right pocket
is P (R2|DD) which is given by

P (R2|DD) =
P (R2 ∩DD)

P (DD)
, (71)

using Bayes’ formula. The probability for the event R2 and DD is given by

P (R2 ∩DD) = P (DLDR) + P (DRDR) =
1

30
+

1

40
=

7

120
, (72)

since in both cases the second dime came from the right pocket. Hence,

P (R2|DD) =
7/120

11/120
=

7

11
. (73)

One can also use an argument analogous to the one presented below (63). Namely, if two dimes
are drawn without replacement, then the probability that the second dime comes from your right
pocket is given by

P (DLDR) + P (DRDR)

P (DLDR) + P (DRDL) + P (DRDR)
=

7/120

11/120
=

7

11
. (74)

7

If four letters are put at random into four envelopes, what is the probability that at least one letter
gets into a correct envelope?

Let us count the number of possibilities; there are 4! = 24 ways in which the envelopes can be
assorted.
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• to have only 1 correct envelope: there are 4 ways to chose the right envelope, then the other
three letters must go in the wrong envelopes, and there are two ways of doing this. We then
have 4 · 8 possibilities.

• to have 2 correct envelopes, they could be any 2 out of the 4, that is, we have C(4, 2) = 6 ways
of choosing the right ones; then the other two must be chosen in the wrong way, and there is
only one way to do this. We have 6 · 1 possibilities.

• if we put 3 correct envelopes, the fourth is also going to be right. The there is 1 case for both
3 and 4 correct envelopes.

We then have 15 possibilities out of 24 to put at least one letter inside the right envelope. Hence,

p =
15

24
=

5

8
. (75)

Another way to do this problem is to compute the probability that no letter gets into a correct
envelope. This is equivalent to asking the following question. Starting with the numbers 1234
in order, how many different permutations are there in which either 1 does not occur in the first
position, 2 does not occur in the second position, 3 does not occur in the third position, or 4 does
not in the fourth position? Such permutations, in which none of the numbers end up in their original
positions, are called derangements. The probability that no letter gets into a correct envelope is
then equal to D4/4!, where D4 is the number of derangements of four objects. It is an interesting
exercise to compute Dn for arbitrary n. In the case of n = 4, one can simply enumerate all nine
possible derangements explicitly:

2143 , 2341 , 2413 , 3142 , 3412 , 3421 , 4123 , 4312 , 4321 . (76)

Hence the probability of a derangement is 9/24 = 3/8. Therefore, the probability that with four
letters and four envelopes, at least one letter gets into a correct envelope is

p = 1− 3

8
=

5

8
. (77)

REMARK: The general formula for Dn is not so hard to derive. It is just an exercise in counting.
The key step is to generalize the result of problem 15–3.8 on p. 734 of Boas to the probability of the
union of n events. Then, if we define Ai be a permutation where the position of the ith number is
unchanged, one can compute the probability of the event A1 ∪A2 ∪ · · · ∪An (where “union” means
“or”). Subtracting this probability from 1 yields the probability of a derangement,2

Dn

n!
=

n
∑

k=0

(−1)k

k!
. (78)

Let us test this out for n = 4. The above formula then yields,

24
[

1− 1 + 1
2 − 1

6 +
1
24

]

= 24− 24 + 12− 4 + 1 = 9 , (79)

in agreement with our explicit computation above. An interesting fact about derangements is that
the probability that a given permutation is a derangement in the limit of n → ∞ is

lim
n→∞

Dn

n!
=

∞
∑

k=0

(−1)k

k!
= e−1 ≃ 0.367 . (80)

Given this result, you should now be able to answer problem 15–11.5 of on p. 776 of Boas.

2See, e.g. pp. 104–106 of Charles M. Grinstead and J. Laurie Snell, Introduction to Probability (American Mathe-
matical Society, Providence, RI, 1997). A link to this textbook can be found on the class webpage.
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8

A bit (i.e., a binary digit) is 0 or 1. An ordered array of eight bits (such as 01101001) is a byte.

(a) How many different bytes are there?

There are 28 = 256 different bytes.

(b) If you select a byte at random, what is the probability that you select a byte containing
three 1’s and five 0’s?

We must count the number of bytes with three 1’s and five 0’s: these is equivalent to the number
of taking 3 indistinguishable objects out of a set of 8. This is C(8, 3):

C(8, 3) =
8!

5!3!
= 8 · 7 =⇒ P =

C(8, 3)

28
=

7

32
(81)

9

A true coin is tossed 10,000 times.

(a) Find the probability of getting exactly 5000 heads.

This is given by the binomial distribution:

PB
5000 =

10000!

5000!5000!
2−10000 = 0.00797865 (82)

where we used Mathematica to do the calculation. For the normal approximation, with µ = np =
5000, σ2 = npq = 2500 = 502,

PN
5000 =

1√
2πσ

= 0.00797885 (83)

the difference is as small as 2 · 10−7.

(b) Find the probability of getting between 4900 and 5075 heads.

Using the binomial distribution, we have to sum between 4900 and 5075:

PB =
5075
∑

n=4900

10000!

n!(10000 − n)!
2−10000 = 0.912267 (84)

With the normal distribution, this is an integral

PN =
1√
2πσ

∫ 5075

4900
e−(x−µ)2/2σ2

dx =
1

2
erf(1.5/

√
2) +

1

2
erf(2/

√
2) = 0.910443 (85)

In class, I argued that the fractional error of the normal approximation should be of O(1/
√
n).

In this problem n = 10000 so we should expect an error of the order of 1%. This is consistent with
the fact that PB and PN differ in the third decimal place.

11



10

Suppose a 200-page book has, on average, one misprint every ten pages. On about how many pages
would you expect to find two misprints?

There are 20 errors in the whole book. The average number of errors per page is 0.1, and we want to
know the probability to have two errors on a single page. This is given by the Poisson distribution:

P2 =
(0.1)2

2!
e−0.1 = 0.0045 (86)

The average number of pages with two errors will be (0.0045)(200) = 0.9. That is, we expect to find
two misprints on at most one page in the book.

11

Let x1, x2, . . . , xn be independent random variables, each with probability density function f(x),
mean µ and variance σ2. Define the sample mean by

x̄ =
1

n

n
∑

i=1

xi (87)

Compute the expectation value E(x̄) and the variance Var(x̄).

The expectation value is

E(x̄) =
1

n

∑

i

E(xi) = µ, (88)

where we have used the fact that E(xi) = µ independently of the index i.

The variance is

Var(x̄) =
1

n2

∑

i

Var(xi) , (89)

since xi and xj are independent events for i 6= j. We have also used the fact that Var(cx) = c2 Var(x),
when c is a constant and x is a random variable. Hence, using Var(xi) = σ2 independently of the
index i, it follows that

Var(x̄) =
1

n2
· nσ2 =

σ2

n
. (90)

Hence, the expectation value of the mean is µ and the standard deviation of the mean is σ/
√
n.

REMARK:

One can also derive a formula for Var(x̄) starting from the definition of the variance. Recall that
Var(x) = E[(x− µ)2] = E(x2)− [E(x)]2. Then,

Var(x̄) = E(x̄2)− [E(x̄)]2 = E

([

1

n

∑

i

xi

]

2
)

− µ2 =
1

n2
E





∑

i

x2i +
∑

i 6=j

xixj



− µ2

=
1

n2

∑

i

E(x2i ) +
1

n2

∑

i 6=j

E(xixj)− µ2 =
1

n2



nσ2 + nµ2 +
∑

i 6=j

E(xixj)



− µ2 , (91)

12



where we have used σ2 = E(x2i ) − [E(xi)]
2 = E(x2i ) − µ2, independently of the index i. The

expectation value of the product of two independent variables is E(xixj) = E(xi)E(xj) = µ2 for
i 6= j. Hence, noting that there are n(n− 1) terms in the sum

∑

i 6=j ,

Var(x̄) =
1

n2

[

nσ2 + nµ2 + n(n− 1)µ2
]

− µ2 =
σ2

n
, (92)

which reproduces the result of (90).

12

Suppose that x and y are discrete random variables, not necessarily independent.

(a) Prove that

E(xy) = E(x)E(y) + Cov(x, y) , (93)

where Cov(x, y) is covariance of x and y.

Denote the joint probability distribution by pij. Since the total probability must be equal to
one, it follows that

∑

i

∑

j

pij = 1 . (94)

Then, we have

E(xy) =
∑

i

∑

j

xiyj pij , (95)

E(x) =
∑

i

∑

j

xi pij , (96)

E(y) =
∑

i

∑

j

yj pij , (97)

Cov(x, y) =
∑

i

∑

j

[xi − E(x)][yj − E(y)]pij . (98)

It then follows that:

Cov(x, y) =
∑

i

∑

j

xiyj pij − E(x)
∑

i

∑

j

yj pij − E(y)
∑

i

∑

j

xi pij + E(x)E(y)
∑

i

∑

j

pij

= E(xy)− E(x)E(y) − E(y)E(x) + E(x)E(y)

= E(xy)− E(x)E(y) . (99)

after making use of eqs. (94)–(98). It then follows that:

E(xy) = E(x)E(y) + Cov(x, y) , (100)

as required.
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(b) A set of n measurements are made (called the “sample”), and the resulting data are
(x1, y1), (x2, y2), . . . , (xn, yn). You may assume that each measurement is independent, which im-
plies that (xi, yi) and (xj , yj) are independent for i 6= j. But you cannot assume that xi and yi are
independent. We wish to estimate the population covariance. Consider

Vn(x, y) =
1

n− 1

n
∑

i=1

(xi − x̄)(yi − ȳ), (101)

where x̄ = 1
n

∑

i xi and ȳ = 1
n

∑

i yi are the corresponding sample means. Evaluate the expectation
value of Vn(x, y) and prove that E(Vn(x, y)) = Cov(x, y).

First, we note that that we can rewrite Vn(x, y) by multiplying out the terms,

Vn(x, y) =
1

n− 1

{

n
∑

n=1

xiyi − nx̄ȳ − nx̄ȳ + nx̄ȳ

}

=
1

n− 1

{

n
∑

n=1

xiyi − nx̄ȳ

}

. (102)

Then,

E(Vn(x, y)) =
1

n− 1

{

n
∑

n=1

xiyi − nE(x̄ȳ)

}

=
1

n− 1







n
∑

n=1

xiyi −
1

n
E





n
∑

i=1

xi

n
∑

j=1

yj











=
1

n− 1







n
∑

n=1

xiyi −
1

n

n
∑

i=1

n
∑

j=1

E(xiyi)







=
1

n− 1















(

1− 1

n

) n
∑

n=1

xiyi −
1

n

n
∑

i=1

n
∑

j=1
for i 6=j

E(xiyj)















. (103)

Since xi and yj are independent when i 6= j, it follows that

E(xiyj) = E(xi)E(yj) = µxµy , for i 6= j , (104)

where E(xi) = µx independently of the index i and E(yj) = µy independently of the index j. Since
xi and yi may not be independent, it follows from part (a) that

E(xiyi) = E(xi)E(yi) + Cov(xi, yi) = µxµy +Cov(x, y) , (105)

since Cov(xi, yi) = Cov(x, y) independently of the index i. Inserting these results into (103), and
noting that there are n(n− 1) terms in the double sum

∑

i 6=j, we end up with:

E(Vn(x, y)) =
1

n− 1

{(

n− 1

n

)

n [µxµy +Cov(x, y)] − n(n− 1)

n
µxµy

}

= Cov(x, y) , (106)

as required.
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