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Many people confuse the standard deviation (SD) and the standard error of the mean (SE) and are unsure which,
if either, to use in presenting data in graphical or tabular form. The SD is an index of the variability of the original
data points and should be reported in all studies. The SE reflects the variability of the mean values, as if the study
were repeated a large number of times. By itself, the SE is not particularly useful; however, it is used in constructing
95% and 99% confidence intervals (CIs), which indicate a range of values within which the “true” value lies. The
CI shows the reader how accurate the estimates of the population values actually are. If graphs are used, error
bars equal to plus and minus 2 SEs (which show the 95% CI) should be drawn around mean values. Both statistical
significance testing and CIs are useful because they assist the reader in determining the meaning of the findings.

(Can J Psychiatry 1996;41:498–502)
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Imagine that you’ve just discovered a new brain protein that
causes otherwise rational people to continuously mutter

words like “reengineer,” “operational visioning,” and “mis-
sion statements.” You suspect that this new chemical, which
you call LDE for Language Destroying Enzyme, would be
found in higher concentrations in the cerebrospinal fluid
(CSF) of administrators than that of other people. Difficult as
it is to find volunteers, you eventually get samples from 25
administrators and an equal number of controls and find the
results shown in Table I. Because you feel that these data
would be more compelling if you showed them visually, you
prepare your paper using a bar graph. Just before you mail it
off, though, you vaguely remember something about error
bars, but can’t quite recall what they are; you check with a
few of your colleagues. The first one tells you to draw a line
above and below the top of each bar so that each part is equal

to the standard deviation. The second person disagrees, say-
ing that the lines should reflect the standard errors, while the
third person has yet another opinion—the lines should be plus
and minus 2 standard errors, that is, 2 standard errors above
and 2 below the mean. As you can see in Figure 1, these
methods result in very different pictures of what’s going on.
So, now you have 2 problems: first, what is the difference
between the standard error and the standard deviation, and
second, which should you draw?

Standard Deviation

The standard deviation, which is abbreviated variously as
S.D., SD, ors (just to confuse people), is an index of how
closely the individual data points cluster around the mean. If
we call each point “Xi,” so that “X1” indicates the first value,
“X 2” the second value, and so on, and call the mean “M,” then
it may seem that an index of the dispersion of the points would

be simplyG(Xi ! M), which means to sum (that’s what the

G indicates) how much each value of X deviates from M; in
other words, an index of dispersion would be theSum of

(Individual Data Points! Mean of the Data Points).

Logical as this may seem, it has 2 drawbacks. The first
difficulty is that the answer will be zero—not just in this
situation, but in every case. By definition, the sum of the
values above the mean is always equal to the sum of the values
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below it, and thus they’ll cancel each other out. We can get
around this problem by taking the absolute value of each
difference (that is, we can ignore the sign whenever it’s
negative), but for a number of arcane reasons, statisticians
don’t like to use absolute numbers. Another way to eliminate
negative values is to square them, since the square of any
number—negative or positive—is always positive. So, what

we now have isG(Xi ! M)2.

The second problem is that the result of this equation will
increase as we add more subjects. Let’s imagine that we have
a sample of 25 values, with an SD of 10. If we now add
another 25 subjects who look exactly the same, it makes
intuitive sense that the dispersion of these 50 points should
stay the same. Yet the formula as it now reads can result only
in a larger sum as we add more data points. We can compen-
sate for this by dividing by the number of subjects, N, so that

the equation now readsG(Xi ! M)2/N.

In the true spirit of Murphy’s Law, what we’ve done in
solving these 2 difficulties is to create 2 new ones. The first
(or should we say third, so we can keep track of our problems)
is that now we are expressing the deviation in squared units;

that is, if we were measuring IQs in children with autism, for
instance, we may find that their mean IQ is 75 and their
dispersion is 100 squared IQ points. But what in heaven’s
name is a squared IQ point? At least this problem is easy to
cure: we simply take the square root of the answer, and we’ll
end up with a number that is in the original units of measure-
ment, so in this example, the dispersion will be 10 IQ points,
which is much easier to understand.

The last problem (yes, it really is the last one) is that the
results of the formula as it exists so far produce abiased
estimate, that is, one that is consistently either higher or (as
in this case) lower than the “true” value. The explanation of
this is a bit more complicated and requires somewhat of a
detour. Most of the time when we do research, we are not
interested so much in the samples we study as in the popula-
tions they come from. That is, if we look at the level of
expressed emotion (EE) in the families of young schizo-
phrenic males, our interest is in the families of all people who
meet the criteria (the population), not just those in our study.
What we do isestimatethe population mean and SD from our
sample. Because all we are studying is a sample, however,
these estimates will deviate by some unknown amount from
the population values. In calculating the SD, we would ideally
see how much each person’s score deviates from the popula-
tion mean, but all we have available to us is the sample mean.
By definition, scores deviate less from their own mean than
from any other number. So, when we do the calculation and
subtract each score from the sample mean, the result will be
smaller than if we subtracted each score from the population
mean (which we don’t know); hence, the result is biased

downwards. To correct for this, we divide by N! 1 instead
of N. Putting all of this together, we finally arrive at the
formula for the standard deviation, which is:

(By the way, don’t use this equation if, for whatever bizarre
reason, you want to calculate the SD by hand, because it leads
to too much rounding error. There is another formula, mathe-
matically equivalent and found in any statistics book, which
yields a more precise figure.)

Now that we’ve gone through all this work, what does it
all mean? If we assume that the data are normally distributed,
then knowing the mean and SD tells us everything we need
to know about the distribution of scores. In any  normal
distribution, roughly two-thirds (actually, 68.2%) of the

scores fall between!1 and +1 SD, and 95.4% between!2 and
+2 SD. For example, most of the tests used for admission to
graduate or professional schools (the GRE, MCAT, LSAT,

Table I
Levels of LDE in the CSF of Administrators and Controls

Group Number Mean SD

Administrators 25 25.83 5.72

Controls 25 17.25 4.36

Figure 1. Data from Table I, plotted with different types of error bars.

SD
X M

N
i=
−∑
−

( )2

1

October 1996 Standard Deviation and Standard Error 499



and other instruments of torture) were originally designed to
have a mean of 500 and an SD of 100. That means that 68%
of people get scores between 400 and 600, and just over 95%
between 300 and 700. Using a table of the normal curve
(found in most statistics books), we can figure out exactly
what proportion of people get scores above or below any
given value. Conversely, if we want to fail the lowest 5% of
test takers (as is done with the LMCCs), then knowing the
mean and SD of this year’s class and armed with the table,
we can work out what the cut-off point should be.

So, to summarize, the SD tells us the distribution of
individual scoresaround the mean. Now, let’s turn our atten-
tion to the standard error.

Standard Error

I mentioned previously that the purpose of most studies is
to estimate some population parameter, such as the mean, the
SD, a correlation, or a proportion. Once we have that estimate,
another question then arises: How accurate is our estimate?
This may seem an unanswerable question; if we don’t know
what the population value is, how can we evaluate how close
we are to it? Mere logic, however, has never stopped statisti-
cians in the past, and it won’t stop us now. What we can do
is resort to probabilities: What is the probability (P) that the
true (population) mean falls within a certain range of values?
(To cite one of our mottos, “Statistics means you never have
to say you’re certain.”)

One way to answer the question is to repeat the study a few
hundred times, which will give us many estimates of the
mean. We can then take the mean of these means, as well as
figure out what the distribution of means is; that is, we can
get the standard deviation of the mean values. Then, using the
same table of the normal curve that we used previously, we
can estimate what range of values would encompass 90% or
95% of the means. If each sample had been drawn from the
population at random, we would be fairly safe in concluding
that the true mean also falls within this range 90% or 95% of
the time. We assign a new name to the standard deviation of
the means: we call it thestandard error of the mean(abbre-
viated as SEM, or, if there is no ambiguity that we’re talking
about the mean, SE).

But first, let’s deal with one slight problem—replicating
the study a few hundred times. Nowadays, it’s hard enough
to get money to do a study once, much less replicate it this
many times (even assuming you would actually want to spend
the rest of your life doing the same study over and over). Ever
helpful, statisticians have figured out a way to determine the

SE based on the results of a single study. Let’s approach this
first from an intuitive standpoint: What would make us more
or less confident that our estimate of the population mean,
based on our study, is accurate? One obvious thing would be
the size of the study; the larger the sample size, N, the less
chance that one or two aberrant values are distorting the
results and the more likely it is that our estimate is close to
the true value. So, some index of N should be in the denomi-
nator of SE, since the larger N is, the smaller SE would
become. Second, and for similar reasons, the smaller the
variability in the data, the more confident we are that one
value (the mean) accurately reflects them. Thus, the SD
should be in the numerator: the larger it is, the larger SE will
be, and we end up with the equation:

(Why does the  denominator read√N instead of  just N?
Because we are really dividing the variance, which is SD2, by
N, but we end up again with squared units, so we take the
square root of everything. Aren’t you sorry you asked?)

So, the SD reflects the variability ofindividual data points,
and the SE is the variability ofmeans.

Confidence Intervals

In the previous section, on the SE, we spoke of a range of
values in which we were 95% or 99% confident that the true
value of the mean fell. Not surprisingly, this range is called
the confidence interval, or CI. Let’s see how it’s calculated.
If we turn again to our table of the normal curve, we’ll find

that 95% of the area falls between!1.96 and +1.96 SDs.
Going back to our example of GREs and MCATs, which have
a mean of 500 and an SD of 100, 95% of scores fall between
304 and 696. How did we get those figures? First, we multi-
plied the SD by 1.96, subtracted it from the mean to find the
lower bound, and added it to the mean for the upper bound.
The CI is calculated in the same way, except that we use the
SE instead of the SD. So, the 95% CI is:

For the 90% CI, we would use the value 1.65 instead of
1.96, and for the 99% CI, 2.58. Using the data from Table I,
the SE for administrators is 5.72 /√25, or 1.14, and thus the
95% CI would be 25.83 ± (1.96 × 1.14), or 23.59 to 28.07.
We would interpret this to mean that we are 95% confident
that the value of LDE in the population of administrators is
somewhere within this interval. If we wanted to be more
confident, we would multiply 1.14 by 2.58; the penalty we

95% 196CI M SE= ± ×( . )
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=

500 The Canadian Journal of Psychiatry Vol 41, No 8



pay for our increased confidence is a wider CI, so that we are
less sure of the exact value.

The Choice of Units

Now we have the SD, the SE, and any one of a number of
CIs, and the question becomes, which do we use, and when?
Obviously, when we are describing the results of any study
we’ve done, it is imperative that we report the SD. Just as
obviously, armed with this and the sample size, it is a simple
matter for the reader to figure out the SE and any CI. Do we
gain anything by adding them? The answer, as usual, is yes
and no.

Essentially, we want to convey to the reader that there will
always be sample-to-sample variation and that the answers
we get from one study wouldn’t be exactly the same if the
study were replicated. What we would like to show is how
much of a difference in findings we can expect: just a few
points either way, but not enough to substantially alter our
conclusions, or so much that the next study is as likely to show
results going in the opposite direction as to replicate the
findings. To some degree, this is what significance testing
does—the lower theP level, the less likely the results are due
simply to chance and the greater the probability that they will
be repeated the next time around. Significance tests, however,
are usually interpreted in an all-or-nothing manner: either the
result was statistically significant or it wasn’t, and a differ-
ence between group means that just barely squeaked under
theP < 0.05 wire is often given as much credence as one that
is highly unlikely to be due to chance.

If we used CIs, either in a table or a graph, it would be
much easier for the reader to determine how much variation
in results to expect from sample to sample. But which CI
should we use? We could draw the error bars on a graph or
show in a table a CI that is equal to exactly one SE. This has
the advantages that we don’t have to choose between the SE
or the CI (they’re identical) and that not much calculation is
involved. Unfortunately, this choice of an interval conveys
very little useful information. An error bar of plus and minus
one SE is the same as the 68% CI; we would be 68% sure that
the true mean (or difference between 2 means) fell within this
range. The trouble is, we’re more used to being 95% or 99%
sure, not 68%. So, to begin with, let’s forget about showing
the SE: it tells us little that is useful, and its sole purpose is in
calculating CIs.

What about the advice to use plus and minus 2 SEs in the
graph? This makes more sense; 2 is a good approximation of
1.96, at least to the degree that graphics programs can display

the value and our eyes discern it. The advantages are twofold.
First, this method shows the 95% CI, which is more
meaningful than 68%. Second, it allows us to do an “eyeball”
test of significance, at least in the 2-group situation. If the top
of the lower bar (the controls in Figure 1) and the bottom of
the higher bar (the administrators) do not overlap, then the
difference between the groups is significant at the 5% level
or better. Thus we would say that, in this example, the 2
groups were significantly different from one another. If we
actually did at test, we would find this to be true:t(48) =
2.668,P < 0.05. This doesn’t work too accurately if there are
more than 2 groups, since we have the issue of multiple tests
to deal with (for example, Group 1 versus Group 2, Group 2
versus 3, and Group 1 versus 3), but it gives a rough indication
of where the differences lie. Needless to say, when presenting
the CI in a table, you should give the exact values (multiply
by 1.96, not 2).

Wrapping Up

The SD indicates the dispersion of individual data values
around their mean, and should be given any time we report
data. The SE is an index of the variability of the means that
would be expected if the study were exactly replicated a large
number of times. By itself, this measure doesn’t convey much
useful information. Its main function is to help construct 95%
and 99% CIs, which can supplement statistical significance
testing and indicate the range within which the true mean or
difference between means may be found. Some journals have
dropped significance testing entirely and replaced it with the
reporting of CIs; this is probably going too far, since both
have advantages, and both can be misused to equal degrees.
For example, a study using a small sample size may report
that the difference between the control and experimental
group is significant at the 0.05 level. Had the study indicated
the CIs, however, it would be more apparent to the reader that
the CI is very wide and the estimate of the difference is crude,
at best. By contrast, the much-touted figure of the number of
people affected by second-hand smoke is actually not the
estimate of the mean. The best estimate of the mean is zero,
and it has a very broad CI; what is reported is the upper end
of that CI.

To sum up, SDs, significance testing, and 95% or 99% CIs
should be reported to help the reader; all are informative and
complement, rather than replace, each other. Conversely,
“naked” SEs don’t tell us much by themselves, and more or
less just take up space in a report. Conducting our studies with
these guidelines in mind may help us to maintain the stand-
ards in psychiatric research.
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Résumé

Beaucoup de gens confondent l’écart-type et l’erreur-type de la moyenne et ne savent pas lequel utiliser pour
présenter les données sous forme graphique ou tabulaire. L’écart-type indique la variabilité des données
originales et devrait être mentionné pour toutes les études. L’erreur-type montre la variabilité des valeurs
moyennes, comme si l’étude avait été reprise de nombreuses fois. En soi, l’erreur-type n’a pas d’utilité
particulière; toutefois, on s’en sert pour créer les intervalles de confiance à 95 % et à 99 % utilisés pour établir
la fourchette de valeurs dans laquelle se situe la valeur «réelle». Les intervalles de confiance signalent au lecteur
la précision des estimations des valeurs démographiques. Lorsqu’on se sert de graphiques, la barre d’erreur
représente un intervalle de plus à moins 2 écarts-types (ce qui correspond à l’intervalle de confiance de 95 %).
Elle devrait entourer la valeur moyenne.  Les épreuves de signification statistique et les intervalles de confiance
présentent une grande utilité, car ils aident le lecteur à établir l’importance des constatations.
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