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Evaluation of some integrals over solid angles—Part 2

In computing the total power liberated by an accelerating charge moving with velocity
~β ≡ ~v/c and acceleration ~a ≡ d~v/dt, we need to compute three integrals over the solid
angle Ω,

I1 =

∫

(n̂ · ~a)2

(1− ~β · n̂)5
dΩ , (1)

I2 =

∫

dΩ

(1− ~β · n̂)3
, (2)

I3 =

∫

n̂ · ~a

(1− ~β · n̂)4
dΩ . (3)

Let’s begin with I2. Choose the z axis to lie along the direction of ~β. Then, it follow
that ~β · n̂ = 1−β cos θ, where β ≡ |~β|. Writing dΩ = d cos θ dφ and introducing w ≡ cos θ,
it follows that

I2 = 2π

∫

1

−1

dw

(1− βw)3
=

2π

β

∫

1+β

1−β

dy

y3
= −

π

β

[

1

(1 + β)2
−

1

(1− β)2

]

, (4)

after changing the integration variable to y = 1− βw. Hence,

I2 =
4π

(1− β2)2
(5)

Next, we can take the derivative of I2 with respect to ~β by making use of eq. (2),

∂I2

∂~β
= 3

∫

n̂ dΩ

(1− ~β · n̂)4
. (6)

Thus, we can identify

I3 =
1

3
~a ·

∂I2

∂~β
. (7)

We can evaluate the right hand side of eq. (7) by using the result obtained in eq. (4). Since

eq. (4) is a function of β = |~β|, we can use the chain rule to write

∂I2

∂~β
=

∂β

∂~β

∂I2
∂β

=
~β

β

∂I2
∂β

. (8)
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To obtain the last step above, we noted that β = (~β ·
~β)1/2. Hence, it follows that

∂β

∂~β
=

∂

∂~β
(~β ·

~β)1/2 = 1

2
(~β ·

~β)−1/2 ∂

∂~β
(~β ·

~β) = (~β ·
~β)−1/2~β =

~β

β
. (9)

Finally, we can use eq. (4) to evaluate ∂I2/∂β ,

∂I2
∂β

=
16πβ

(1− β2)3
. (10)

Hence, we end up with

I3 =
16π

3

~a ·
~β

(1− β2)3
. (11)

Finally, we can use eq. (2) to obtain

∂I2
∂βi

= 3

∫

n̂i dΩ

(1− ~β · n̂)4
, (12)

∂2I2
∂βi∂βj

= 12

∫

n̂in̂j dΩ

(1− ~β · n̂)5
, (13)

after two successive differentiations. Hence, we can identify,

I1 =
1

12

∑

i,j

aiaj
∂2I2

∂βi∂βj

. (14)

Note that eqs. (9) and (10) are equivalent to

dI2
dβi

=
16πβi

(1 = β2)3
. (15)

The second derivative can now be easily evaluated with the help of eq. (9),

∂2I2
∂βi∂βj

=
16πδij

(1− β2)3
+ 16πβi

βj

β

∂

∂β

(

1

(1− β2)3

)

=
16πδij

(1− β2)3
+

96πβiβj

(1− β2)4
. (16)

Hence, eq. (14) yields,

I1 =
4π

3

|~a|2

(1− β2)3
+

8π(~a ·
~β)2

(1− β2)4
. (17)
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There is an alternative technique for evaluating I1 and I3. We can define the following
two integrals,

Jij =

∫

n̂in̂j dΩ

(1− ~β · n̂)5
, (18)

Ki =

∫

n̂i dΩ

(1− ~β · n̂)4
. (19)

By the covariance properties of Euclidean tensors, it follows that

Jij = c1δij + c2βiβj , (20)

Ki = κβi . (21)

Consider first the evaluation of Ki. Multiplying by βi and summing over i yields

κβ2 =

∫ ~β · n̂ dΩ

(1− ~β · n̂)4
. (22)

The integral above is now easily evaluated by employing the same method used to obtain
eq. (4). Thus, we can obtain an explicit expression for κ. I will leave it as an exercise for
the reader to show that

κ =
16π

3

1

(1− β2)3
. (23)

Likewise, to evaluate Jij, we first multiply by δij and sum over i and j to get one
equation. A second equation is obtained by multiplying by βiβj and summing over i and j,
Thus, we get two equations for the two unknowns c1 and c2,

3c1 + c2β
2 =

∫

dΩ

(1− ~β · n̂)5
, (24)

c1β
2 + c2β

4 =

∫

(~β · n̂)2 dΩ

(1− ~β · n̂)5
. (25)

Again, the two integrals above are easily evaluated by employing the same method used to
obtain eq. (4). One can now solve for c1 and c2. I will leave it as an exercise for the reader
to carry out the remaining computations to obtain,

c1 =
4π

3

1

(1− β2)3
, c2 =

8π

(1− β2)4
. (26)

Finally, we obtain

I1 =
∑

i,j

aiajJij , I3 =
∑

i

aiKi . (27)

Using eqs. (20), (21), (23) and (26), we recover the results obtained in eqs. (17) and (11),
respectively.
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