Physics 214 Winter 2023

### Quantum Mechanics of a Charged Particle in an Electromagnetic Field

These notes present the Schrodinger equation for a charged particle in an external electromagnetic field. In order to obtain the relevant equation, we first examine the classical Hamiltonian of a charged particle in an electromagnetic field. We then use this result to obtain the Schrodinger equation using the principle of minimal substitution. We examine a special case of a uniform magnetic field. Finally, we demonstrate the origin of the coupling of the spin operator to the external magnetic field in the case of a charged spin-1/2 particle.

Note that in these notes, we assume that all motion is non-relativistic. Thus, we shall set  $\gamma = (1 - v^2/c^2)^{-1/2} \simeq 1$ .

#### I. Classical Hamiltonian of a charged particle in an electromagnetic field

We begin by examining the classical theory of a charged spinless particle in and external electric field  $\vec{E}$  and magnetic field  $\vec{B}$ . Gaussian (or cgs) units are employed for electromagnetic quantities. It is convenient to introduce the vector potential  $\vec{A}$  and the scalar potential  $\phi$ :

$$\vec{B} = \vec{\nabla} \times \vec{A}, \qquad \vec{E} = -\vec{\nabla}\phi - \frac{1}{c}\frac{\partial \vec{A}}{\partial t}.$$
 (1)

These equations encode two of the four Maxwell equations,

$$\vec{\nabla} \cdot \vec{B} = 0, \qquad \vec{\nabla} \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}, \qquad (2)$$

due to the vector identities

$$\vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = 0, \qquad \vec{\nabla} \times (\vec{\nabla} \phi) = 0,$$

which are valid for any non-singular vector field  $\vec{A}(\vec{x},t)$  and scalar field  $\phi(\vec{x},t)$ .

However, the fields  $\vec{A}$  and  $\phi$  are not unique. Namely, the following transformations:

$$\vec{A} \longrightarrow \vec{A} + \vec{\nabla} \chi(\vec{x}, t), \qquad \phi \longrightarrow \phi - \frac{1}{c} \frac{\partial \chi(\vec{x}, t)}{\partial t},$$
 (3)

called gauge transformations leave the physical electromagnetic fields,  $\vec{E}$  and  $\vec{B}$ , unchanged.

We wish to write down a classical Hamiltonian H that describes the motion of a charged particle q in an external electromagnetic field. Given H, we can use Hamilton's equations to derive the equations of motion for the charged particle. The correct Hamiltonian will yield the Lorentz force law:

$$\vec{F} = \frac{d}{dt}(m\vec{v}) = q\left(\vec{E} + \frac{\vec{v}}{c} \times \vec{B}\right). \tag{4}$$

The Hamiltonian for a charged particle in an electromagnetic field is given by:

$$H = \frac{1}{2m} \left( \vec{p} - \frac{q\vec{A}}{c} \right) \cdot \left( \vec{p} - \frac{q\vec{A}}{c} \right) + q\phi.$$
 (5)

We shall verify this result by using Hamilton's equations to compute the equations of motion and demonstrate that these coincide with eq. (4). For a Hamiltonian of the form  $H = H(p_i, x_i)$ , Hamilton's equations are given by:

$$\frac{\partial H}{\partial p_i} = \frac{dx_i}{dt}, \qquad -\frac{\partial H}{\partial x_i} = \frac{dp_i}{dt},$$

where i runs over the three directions of space. In particular, the partial derivative with respect to  $p_i$  is computed at fixed  $x_i$  and the partial derivative with respect to  $x_i$  is computed at fixed  $p_i$ . Inserting eq. (5) into Hamilton's equations yields:

$$v_i \equiv \frac{dx_i}{dt} = \frac{p_i}{m} - \frac{q}{mc} A_i \,, \tag{6}$$

$$F_{i} \equiv \frac{dp_{i}}{dt} = \frac{q}{mc} \left( \vec{p} - \frac{q\vec{A}}{c} \right) \cdot \frac{\partial \vec{A}}{\partial x_{i}} - q \frac{\partial \phi}{\partial x_{i}}.$$
 (7)

Eq. (6) is equivalent to:

$$\vec{p} = m\vec{v} + \frac{q}{c}\vec{A}$$
.

The quantity  $m\vec{v}$  is called the *mechanical momentum*, which is *not* equal to  $\vec{p}$ , which is called the *canonical momentum*. The reason for this nomenclature will be addressed later. If we now substitute the equation for  $\vec{p}$  in eq. (7), we obtain:

$$\frac{d}{dt}\left(mv_i + \frac{q}{c}A_i\right) = \frac{q}{c}\,\vec{\boldsymbol{v}}\cdot\frac{\partial\vec{\boldsymbol{A}}}{\partial x_i} - q\frac{\partial\phi}{\partial x_i}.$$
 (8)

which we can rewrite as:

$$\frac{d}{dt}(mv_i) = \frac{q}{c} \left[ \vec{\boldsymbol{v}} \cdot \frac{\partial \vec{\boldsymbol{A}}}{\partial x_i} - \frac{dA_i}{dt} \right] - q \frac{\partial \phi}{\partial x_i}. \tag{9}$$

To make further progress, note that  $d\vec{A}/dt$  is a full time-derivative of  $\vec{A}$ . By the chain rule,

$$\frac{d\vec{A}}{dt} = \frac{\partial \vec{A}}{\partial t} + \sum_{j=1}^{3} \frac{\partial \vec{A}}{\partial x_j} \frac{dx_j}{dt}.$$

The chain rule reflects the physical fact that the full time-derivative of  $\vec{A}$  has two sources: (i) explicit time-dependence of  $\vec{A}(\vec{x},t)$ , and (ii) implicit time-dependence by virtue of the fact that the charged particle moves on a trajectory  $\vec{x} = \vec{x}(t)$ . Noting that  $v_i \equiv dx_i/dt$  [where  $\vec{x} \equiv (x_1, x_2, x_3)$ ], we can rewrite the chain rule above as:

$$\frac{dA_i}{dt} = \frac{\partial A_i}{\partial t} + (\vec{\boldsymbol{v}} \cdot \vec{\boldsymbol{\nabla}}) A_i.$$

Inserting this result in eq. (9) yields:

$$\frac{d}{dt}(mv_i) = \frac{q}{c} \left[ \vec{\boldsymbol{v}} \cdot \frac{\partial \vec{\boldsymbol{A}}}{\partial x_i} - \frac{\partial A_i}{\partial t} - (\vec{\boldsymbol{v}} \cdot \vec{\boldsymbol{\nabla}}) A_i \right] - q \frac{\partial \phi}{\partial x_i}. \tag{10}$$

Next, we make use of the vector identity:

$$\left[\vec{\boldsymbol{v}} \times (\vec{\boldsymbol{\nabla}} \times \vec{\boldsymbol{A}})\right]_{i} = \vec{\boldsymbol{v}} \cdot \frac{\partial \vec{\boldsymbol{A}}}{\partial x_{i}} - (\vec{\boldsymbol{v}} \cdot \vec{\boldsymbol{\nabla}}) A_{i}. \tag{11}$$

This should remind you of the BAC–CAB rule used for computing the triple cross-product:  $\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B}(\vec{A} \cdot \vec{C}) - \vec{C}(\vec{A} \cdot \vec{B})$ . In the case of the identity above, you have to be careful since one of the vectors is a differential operator, which does not commute with  $\vec{x}$ . However, it is straightforward to prove eq. (11) by employing a well-known identity involving the product of two Levi Civita tensors:

$$\left[\vec{\boldsymbol{v}}\times(\vec{\boldsymbol{\nabla}}\times\vec{\boldsymbol{A}})\right]_{i} = \epsilon_{ijk}v_{j}\epsilon_{k\ell m}\frac{\partial A_{m}}{\partial x_{\ell}} = (\delta_{i\ell}\delta_{jm} - \delta_{im}\delta_{j\ell})v_{j}\frac{\partial A_{m}}{\partial x_{\ell}} = \vec{\boldsymbol{v}}\cdot\frac{\partial\vec{\boldsymbol{A}}}{\partial x_{i}} - (\vec{\boldsymbol{v}}\cdot\vec{\boldsymbol{\nabla}})A_{i},$$
(12)

where there is an implied sum over pairs of repeated indices. In light of eq. (11), one can rewrite eq. (10) as follows:

$$\frac{d}{dt}(m\vec{\boldsymbol{v}}) = \frac{q}{c}\vec{\boldsymbol{v}} \times (\vec{\boldsymbol{\nabla}} \times \vec{\boldsymbol{A}}) - q\left(\vec{\boldsymbol{\nabla}}\phi + \frac{1}{c}\frac{\partial \vec{\boldsymbol{A}}}{\partial t}\right).$$

Finally, using eq. (1), we end up with

$$\frac{d}{dt}(m\vec{\mathbf{v}}) = q\vec{\mathbf{E}} + \frac{q}{c}\vec{\mathbf{v}} \times \vec{\mathbf{B}},$$

which coincides with eq. (4), as required.

So far, we have described the motion of a charged particle in an external electromagnetic field. If the particle also feels an external potential  $V(\vec{x}, t)$  that is unrelated to the external electromagnetic field, then we should use the more general Hamiltonian,

$$H = \frac{1}{2m} \left( \vec{p} - \frac{q\vec{A}}{c} \right) \cdot \left( \vec{p} - \frac{q\vec{A}}{c} \right) + q\phi + V(\vec{x}, t).$$
(13)

Eq. (13) suggests the principle of minimal substitution, which states that the Hamiltonian for a charged particle (of charge q) in an external electromagnetic field can be obtained from the corresponding Hamiltonian for an uncharged particle by making the following substitutions:

$$\vec{\boldsymbol{p}} \longrightarrow \vec{\boldsymbol{p}} - rac{q}{c} \vec{\boldsymbol{A}}(\vec{\boldsymbol{x}},t) \,, \qquad \qquad V(\vec{\boldsymbol{x}},t) \longrightarrow V(\vec{\boldsymbol{x}},t) + q\phi(\vec{\boldsymbol{x}},t) \,.$$

# II. Schrodinger equation for a charged particle in an external electromagnetic field

We first write down the time-dependent Schrodinger equation,

$$H|\psi(t)\rangle = i\hbar \frac{\partial}{\partial t} |\psi(t)\rangle$$
,

where

$$H = \frac{1}{2m} \left( \vec{\boldsymbol{p}} - \frac{q\vec{\boldsymbol{A}}}{c} \right) \cdot \left( \vec{\boldsymbol{p}} - \frac{q\vec{\boldsymbol{A}}}{c} \right) + q\phi + V(\vec{\boldsymbol{x}}, t) \,.$$

For simplicity, we will set the external potential  $V(\vec{x},t)$  to zero, and assume that the electromagnetic potentials are time-independent. Then, the time-independent Schrodinger equation for stationary state solutions  $|\psi\rangle$  is given by:

$$\frac{1}{2m} \left( \vec{p} - \frac{q\vec{A}}{c} \right)^2 |\psi\rangle = (E - q\phi) |\psi\rangle .$$

Comparing this with the time-independent Schrodinger equation for a free particle, one can introduce the *principle of minimal substitution* at this point by noting that the time-independent Schrodinger equation for a charged particle of charge q is obtained by the substitution:

$$\vec{p} \longrightarrow \vec{p} - \frac{q}{c} \vec{A}(\vec{x}, t)$$
,  $E \longrightarrow E - q\phi(\vec{x}, t)$ .

In the coordinate representation, we identify  $\vec{p}$  with the differential operator  $-i\hbar\vec{\nabla}$ . Hence, the time-independent Schrodinger equation is given by:

$$\boxed{\frac{1}{2m} \left[ i\hbar \vec{\nabla} + \frac{q}{c} \vec{A}(\vec{x}) \right]^2 \psi(\vec{x}) + q\phi(\vec{x})\psi(\vec{x}) = E\psi(\vec{x}) \,.}$$

In obtaining the above result, we implicitly assumed that we should identify the canonical momentum  $\vec{p}$  [and not the mechanical momentum  $m\vec{v}$ ] with the operator  $-i\hbar\vec{\nabla}$ . The momentum operator  $\vec{p}$  is called the *canonical* momentum because it satisfies the canonical commutation relations,

$$[x_i, p_j] = i\hbar \delta_{ij}.$$

This is one of the essential postulates of quantum mechanics. Had we tried to identify  $m\vec{\boldsymbol{v}}$  with  $-i\hbar\vec{\boldsymbol{\nabla}}$ , we would have found that the resulting theory does not reduce to the classical limit as  $\hbar \to 0$ .

The Schrodinger equation written above can be expanded out:

$$\frac{-\hbar^2}{2m}\vec{\nabla}^2\psi + \frac{iq\hbar}{mc}\vec{A}\cdot\vec{\nabla}\psi + \frac{iq\hbar}{2mc}\psi(\vec{\nabla}\cdot\vec{A}) + \frac{q^2}{2mc^2}\vec{A}^2\psi + q\phi\psi = E\psi,$$

where we have suppressed the coordinate arguments of the electromagnetic vector and scalar potentials and the wave function  $\psi$ . At this point, the equation can

be simplified by *choosing a gauge*. Given any  $\vec{A}$  and  $\phi$ , one can perform a gauge transformation [cf. eq. (3)] such that the resulting  $\vec{A}$  and  $\phi$  satisfy:

$$ec{m{
abla}} \cdot ec{m{A}} = 0 \,, \qquad \phi = 0 \,,$$
 Coulomb gauge conditions

Suppose  $(\vec{A}, \phi)$  are the initial vector and scalar potential. Making a gauge transformation,

$$\vec{A}' = \vec{A} + \vec{\nabla} \chi(\vec{x}, t), \qquad \phi' = \phi - \frac{1}{c} \frac{\partial \chi(\vec{x}, t)}{\partial t}.$$

To ensure that the Coulomb gauge conditions are satisfied, we require that:

$$\vec{\nabla}^2 \chi(\vec{x}, t) = -\vec{\nabla} \cdot \vec{A}(\vec{x}, t), \qquad \frac{\partial \chi(\vec{x}, t)}{\partial t} = c\phi(\vec{x}, t).$$

One can always find a  $\chi(\vec{x}, t)$  such that the above conditions are satisfied! By choosing such a  $\chi(\vec{x}, t)$ , it then follows that  $\vec{\nabla} \cdot \vec{A}' = \phi' = 0$  as desired. Thus, the Schrodinger equation in the Coulomb gauge is given by:

$$\boxed{\frac{-\hbar^2}{2m}\vec{\nabla}^2\psi + \frac{iq\hbar}{mc}\vec{A}\cdot\vec{\nabla}\psi + \frac{q^2}{2mc^2}\vec{A}^2\psi + q\phi\psi = E\psi.}$$

## III. Schrodinger equation for a charged particle in a uniform electromagnetic field

We can use the results obtained Section II to examine two cases.

### 1. A uniform electric field

In this case, it is *not* convenient to use the Coulomb gauge. Instead, we choose  $\vec{A} = 0$  and  $\vec{E} = -\vec{\nabla}\phi$ . The Schrodinger equation becomes:

$$\frac{-\hbar^2}{2m} \vec{\nabla}^2 \psi + q\phi\psi = E\psi \,,$$

which has the same form as the usual Schrödinger equation for a particle in a potential.

#### 2. A uniform magnetic field

In this case, we will choose the Coulomb gauge. If  $\vec{B}$  is uniform in space and time-independent, then, one may choose:

$$\vec{A} = -\frac{1}{2}\vec{x} \times \vec{B}$$
,  $\phi = 0$ .

To check that this is correct, we use eq. (1) to compute  $\vec{E}$  and  $\vec{B}$ . Since  $\vec{A}$  is time-independent and  $\phi = 0$ , it follows that  $\vec{E} = 0$ . Next, we compute  $\vec{B} = \vec{\nabla} \times \vec{A}$ . Noting that:

$$A_x = -\frac{1}{2}(yB_z - zB_y), \qquad A_y = -\frac{1}{2}(zB_x - xB_z), \qquad A_z = -\frac{1}{2}(xB_y - yB_x),$$

one easily evaluates:

$$\vec{\nabla} \times \vec{A} = \hat{x} \left( \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \hat{y} \left( \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{z} \left( \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)$$
$$= \hat{x} B_x + \hat{y} B_y + \hat{z} B_z = \vec{B}.$$

Furthermore, note that

$$\vec{\nabla} \cdot \vec{A} = -\frac{1}{2} \vec{\nabla} \cdot (\vec{x} \times \vec{B}) = 0,$$

which confirms that we have indeed chosen the Coulomb gauge. Thus, the time-independent Schrodinger equation reads:

$$\frac{-\hbar^2}{2m} \vec{\nabla}^2 \psi - \frac{iq\hbar}{2mc} (\vec{x} \times \vec{B}) \cdot \vec{\nabla} \psi + \frac{q^2}{8mc^2} (\vec{x} \times \vec{B})^2 \psi = E \psi.$$

This equation can be simplified by noting the vector identity:

$$(\vec{x} \times \vec{B}) \cdot \vec{\nabla} \psi = -\vec{B} \cdot (\vec{x} \times \vec{\nabla} \psi)$$
.

Hence,

$$-\frac{iq\hbar}{2mc}(\vec{x}\times\vec{B})\cdot\vec{\nabla}\psi = -\frac{q}{2mc}\vec{B}\cdot\left(\vec{x}\times\frac{\hbar}{i}\vec{\nabla}\psi\right).$$

We identify the canonical angular momentum operator,

$$\vec{L} \equiv \vec{x} \times \frac{\hbar}{i} \vec{\nabla} \,. \tag{14}$$

This is to be distinguished from the mechanical angular momentum  $\vec{x} \times (m\vec{v})$ . You can check that the canonical angular momentum operators of eq. (14) satisfy the usual angular momentum commutation relations,

$$[L_i, L_j] = i\hbar\epsilon_{ijk}L_k,$$

where there is an implicit sum over the repeated index  $k \in \{1, 2, 3\}$ . Hence, we can write:

$$-\frac{iq\hbar}{2mc}(\vec{x}\times\vec{B})\cdot\vec{\nabla}\psi = -\frac{q}{2mc}\vec{B}\cdot\vec{L}\psi.$$

Finally, if we use the vector identity,

$$(\vec{x} \times \vec{B})^2 = r^2 \vec{B}^2 - (\vec{x} \cdot \vec{B})^2$$

where  $r \equiv |\vec{x}|$ , then the time-independent Schrodinger equation for a charged particle of charge q in an external uniform magnetic field  $\vec{B}$  is given by:

$$\left[ \frac{-\hbar^2}{2m} \vec{\nabla}^2 \psi - \frac{q}{2mc} \vec{B} \cdot \vec{L} \psi + \frac{q^2}{8mc^2} \left[ r^2 \vec{B}^2 - (\vec{x} \cdot \vec{B})^2 \right] \psi = E \psi . \right]$$
(15)

## IV. Schrodinger equation for a charged spin-1/2 particle in an electromagnetic field

So far, we have neglected spin. For a spin-1/2 particle, the wave function is a spinor of the form

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} .$$

Likewise, the Hamiltonian operator must be a  $2 \times 2$  matrix.

To determine the correct Hamiltonian for a charged spin-1/2 particle in an electromagnetic field, we choose the Hamiltonian for a free uncharged spin-1/2 particle to be:

$$H = \frac{(\vec{\boldsymbol{\sigma}} \cdot \vec{\boldsymbol{p}})^2}{2m} \,. \tag{16}$$

Noting that  $(\vec{\boldsymbol{\sigma}} \cdot \vec{\boldsymbol{p}})^2 = \vec{\boldsymbol{p}}^2 \mathbf{I}$ , where  $\mathbf{I}$  is the  $2 \times 2$  identity matrix, we recover the expected free particle Hamiltonian. In order to obtain the Hamiltonian for a charged spin-1/2 particle, we apply the principle of minimal substitution to eq. (16). Thus, we choose

$$H = \frac{1}{2m} \vec{\boldsymbol{\sigma}} \cdot \left( \vec{\boldsymbol{p}} - \frac{q\vec{\boldsymbol{A}}}{c} \right) \vec{\boldsymbol{\sigma}} \cdot \left( \vec{\boldsymbol{p}} - \frac{q\vec{\boldsymbol{A}}}{c} \right) + q\phi \mathbf{I} .$$

We can simplify the first term above by writing:

$$\vec{\boldsymbol{\sigma}} \cdot \left( \vec{\boldsymbol{p}} - \frac{q\vec{\boldsymbol{A}}}{c} \right) \vec{\boldsymbol{\sigma}} \cdot \left( \vec{\boldsymbol{p}} - \frac{q\vec{\boldsymbol{A}}}{c} \right) = \sum_{ij} \sigma_i \sigma_j \left( p_i - \frac{qA_i}{c} \right) \left( p_j - \frac{qA_j}{c} \right)$$

$$= \sum_{ijk} \left( \delta_{ij} \mathbf{I} + i \epsilon_{ijk} \sigma_k \right) \left( p_i - \frac{qA_i}{c} \right) \left( p_j - \frac{qA_j}{c} \right)$$

$$= \left( \vec{\boldsymbol{p}} - \frac{q\vec{\boldsymbol{A}}}{c} \right)^2 \mathbf{I} - \frac{iq}{c} \sum_{ijk} \epsilon_{ijk} (p_i A_j + A_i p_j) \sigma_k , \quad (17)$$

where we have used the sigma matrix identity,

$$\sigma_i \sigma_j = \mathbf{I} \, \delta_{ij} + i \sum_{k=1}^3 \epsilon_{ijk} \sigma_k$$
.

Note that

$$\sum_{ij} \epsilon_{ijk} p_i p_j = \sum_{ij} \epsilon_{ijk} A_i A_j = 0,$$

since  $\epsilon_{ijk} = -\epsilon_{jik}$  is a totally antisymmetric tensor.

<sup>&</sup>lt;sup>1</sup>If one applies the principle of minimal substitution to  $H = (\vec{p}^2/(2m))\mathbf{I}$ , one obtains a spin-independent Hamiltonian, which is in conflict with experiment. Remarkably, applying the principle of minimal substitution to eq. (16) yields a spin-dependent Hamiltonian, which is in very good agreement with experiment.

To evaluate the second term in eq. (17) above, we use

$$\sum_{ijk} \epsilon_{ijk} (p_i A_j + A_i p_j) \sigma_k = \sum_{ijk} \epsilon_{ijk} (p_i A_j - A_j p_i) \sigma_k ,$$

where we have used the antisymmetry of  $\epsilon_{ijk}$  followed by an appropriate relabeling of indices. Employing the operator identity (which is most easily checked in the coordinate representation),

$$p_i A_j - A_j p_i = [p_i, A_j] = -i\hbar \frac{\partial A_j}{\partial x_i},$$

it follows that

$$\sum_{ij} \epsilon_{ijk} (p_i A_j + A_i p_j) = \sum_{ij} \epsilon_{ijk} [p_i, A_j] = -i\hbar \sum_{ij} \epsilon_{ijk} \frac{\partial A_j}{\partial x_i} = -i\hbar B_k,$$

after recognizing that  $\vec{B} = \vec{\nabla} \times \vec{A}$  implies that:

$$B_k = \sum_{ij} \epsilon_{ijk} \frac{\partial A_j}{\partial x_i} \,.$$

Consequently,

$$\vec{\boldsymbol{\sigma}} \cdot \left( \vec{\boldsymbol{p}} - \frac{q\vec{\boldsymbol{A}}}{c} \right) \vec{\boldsymbol{\sigma}} \cdot \left( \vec{\boldsymbol{p}} - \frac{q\vec{\boldsymbol{A}}}{c} \right) = \left( \vec{\boldsymbol{p}} - \frac{q\vec{\boldsymbol{A}}}{c} \right)^2 \mathbf{I} - \frac{\hbar q}{c} \vec{\boldsymbol{\sigma}} \cdot \vec{\boldsymbol{B}}.$$

Thus, the Hamiltonian for a charged spin-1/2 particle in an external electromagnetic field is:

$$H = \frac{1}{2m} \left( \vec{p} - \frac{q\vec{A}}{c} \right)^2 \mathbf{I} - \frac{\hbar q}{2mc} \vec{\sigma} \cdot \vec{B} + q\phi \mathbf{I}.$$

That is, if  $H_0$  is the spin-independent part of the Hamiltonian, then

$$H = H_0 - \frac{q}{mc} \vec{\mathbf{S}} \cdot \vec{\mathbf{B}} \,, \tag{18}$$

where we have identified the spin-1/2 operator,  $\vec{S} = \frac{1}{2}\hbar\vec{\sigma}$ .

Let us apply the above results to obtain the time-independent Schrodinger equation for a charged spin-1/2 particle in a uniform magnetic field. Using eqs. (15) and (18), it follows that:

$$\boxed{\frac{-\hbar^2}{2m}\vec{\nabla}^2\psi - \frac{q}{2mc}\vec{B}\cdot(\vec{L} + 2\vec{S})\psi + \frac{q^2}{8mc^2}\left[r^2\vec{B}^2 - (\vec{x}\cdot\vec{B})^2\right]\psi = E\psi.}$$

Note especially the relative factor of 2 in  $\vec{L} + 2\vec{S}$  above. This means that we have predicted that an elementary charged spin-1/2 particle has a g-factor equal to 2. In more general circumstances,  $\vec{L} + 2\vec{S}$  in the above equation should be replaced by  $\vec{L} + g\vec{S}$ , where g is determined from experiment.