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The power spectrum of Cherenkov radiation

Consider a charge e moving along a trajectory, ~x ′ = ~r(t′), where t′ is the retarded
time. We choose the origin of our coordinate system to be in the region of space near
the trajectory of the charge. First, suppose that the charge is moving with velocity
~v ≡ c~β and acceleration ~a = d~v/dt = c d~β/dt. The radiation emitted by the charge
is detected by an observer located at the point ~x. We define the unit vector n̂ by

n̂ ≡ ~x− ~r(t)

|~x− ~r(t)| , (1)

which points along the direction from the charge to the observer. Let us define
R ≡ |~x − ~r(t)| and r ≡ |~x|. Assuming that the observation point is very far away
from the region of space where the trajectory of the charge is located, then

n̂ = r̂ +O
(

1

r

)

. (2)

That is, to paraphrase Jackson [see the text on p. 675 below eq. (14.62)], the unit
vector n̂ is constant in time to a very good approximation.

In class, we showed that the power spectrum for a radiating charge e in vacuum
is given by (in gaussian units)

d2I

dωdΩ
= lim

r→∞

cr2|~Eω(~x)|2 , (3)

where1

~Eω(~x) ≡
1

2π

∫

∞

−∞

~E(~x, t′)eiωt
′

dt′

=
e

2πc2r
eiωr/c

∫

∞

−∞

dt′ e iω[t
′
−n̂·~r(t′)/c] n̂× [(n̂− ~β)×~a]

(1− n̂ · ~β)2
+ O

(

1

r2

)

. (4)

Noting that:

d

dt′

(

n̂× (n̂× ~β)

1− ~β · n̂

)

=
n̂× [(n̂− ~β)× ~a]

c(1− n̂ · ~β)2
,

we may integrate eq. (4) by parts. Assuming that the surface term can be dropped,
we find:

~Eω(~x) =
−ieω
2πc2r

eiωr/c
∫

∞

−∞

dt′ e iω[t
′
−n̂·~r(t′)/c] n̂× (n̂× ~v) +O

(

1

r2

)

.

1Note that because the electric field, ~E(~x, t′) is real, it follows that ~E−ω(~x) = ~E ∗

ω
(~x). Hence it

suffices to consider only positive frequencies.
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We now suppose that the charge is moving at constant velocity ~v, with no accel-
eration. In this case, the particle trajectory is given by ~r(t′) = ~vt′. Using the fact
that we can approximate n̂ as being time-independent [cf. eq. (2)],

~Eω(~x) =
−ieω
2πc2r

eiωr/c n̂× (n̂× ~v)

∫

∞

−∞

dt′ e iωt
′[1−n̂·~v/c] +O

(

1

r2

)

=
−ie
c2r

eiωr/c n̂× (n̂× ~v) δ

(

1− n̂ · ~v

c

)

+O
(

1

r2

)

, (5)

where in the last step, we used δ (ω[1− n̂ · ~v/c]) = ω−1δ (1− n̂ · ~v/c), since by as-

sumption, ω is non-negative. We may use eq. (5) to determine ~E(~x, t):

~E(~x, t) =

∫

∞

−∞

dωe−iωt ~Eω(~x)

= −2πie

c2r
n̂× (n̂× ~v) δ

(

1− n̂ · ~v

c

)

δ
(

t− r

c

)

+O
(

1

r2

)

.

Of course, since |~v| < c, it follows that δ (1− n̂ · ~v/c) = 0. Hence as expected, there
is no radiation from a charge moving at constant velocity.

In an isotropic, homogeneous medium where ǫ 6= 1, the above results apply if we
make the following transformations:2 ~E → nr

~E, c → c/nr and e → e/nr, where the
index of refraction is nr ≡

√
ǫ. In this case,

~Eω(~x) =
−ieω
2πc2r

einrωr/c n̂× (n̂× ~v)

∫

∞

−∞

dt′ e iωt
′[1−nrn̂·~v/c] +O

(

1

r2

)

(6)

Evaluating the above integral, we obtain:

~Eω(~x) =
−ie
c2r

einrωr/c n̂× (n̂× ~v) δ

(

1− nrn̂ · ~v

c

)

+O
(

1

r2

)

. (7)

If n̂ · ~v = c/nr (which is possible if the charged particle is moving faster than the
speed of light in the medium, c/nr), then δ(1 − nrn̂ · ~v/c) 6= 0 and the resulting
electric field does exhibit an O(1/r) behavior at large r. Indeed, one can verify that3

~E(~x, t) =

∫

∞

−∞

dω e−iωt ~Eω(~x)

= − ie

c2r
n̂× (n̂× ~v) δ

(

1− nrn̂ · ~v

c

)
∫

∞

−∞

dω e−iω(t−nrr/c) +O
(

1

r2

)

= −2πie

c2r
n̂× (n̂× ~v) δ

(

t− nrr

c

)

δ

(

1− nrn̂ · ~v

c

)

+O
(

1

r2

)

. (8)

2For simplicity, we assume that the magnetic permeability µ = 1.
3The delta functions in eq. (8) imply that the electric field is singular on the surface of the Mach

cone where n̂ · ~v = c/nr and r = ct/nr. These singularities arise due to an idealization of the
problem (e.g. the assumption of a point charge); in a more realistic setting these singularities are
smoothed out. For example, see Glenn S. Smith, Cherenkov radiation from a charge of finite size or

a bunch of charges, American Journal of Physics 61, 147–155 (1993).
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Thus, radiation can occur—this is Cherenkov radiation. To compute the power spec-
trum, one may be tempted to insert eq. (7) into eq. (3). However, this results in a
square of a delta-function which requires a careful interpretation.

Here, we provide a calculational method that avoids the square of the delta-
function. Insert eq. (6) into eq. (3) [after replacing ~E → nr

~E and c → c/nr in the
latter], and note the identity |n̂× (n̂× ~v)|2 = |n̂× ~v|2. Then,

d2I

dωdΩ
= nrcr

2|~Eω(~x)|2 =
nre

2ω2

4π2c3
|n̂× ~v|2

∫

∞

−∞

dt′
∫

∞

−∞

dt′′ eiω(t
′
−t′′)(1−nrn̂·~v/c) .

It is convenient to introduce two new integration variables:

T ≡ 1
2
(t′ + t′′) , t ≡ t′ − t′′ .

Note that the Jacobian of the transformation from (t′, t′′) to (t, T ) is unity. This
change of variables is inspired by the treatment of Cherenkov radiation given in
Classical Electrodynamics by Julian Schwinger et al. I quote from this textbook:

[The time] t is of order 1/ω, thus setting the time scale for the emission of
radiation.4 This microscopic time scale may be much smaller than macro-
scopic time intervals; for example, for visible light, t ∼ 10−15 sec. The time
T is then interpreted as the average (macroscopic) time of emission. . .

We therefore define the power distribution of the radiation by:

d2I

dωdΩ
=

∫

∞

−∞

dT
dP

dωdΩ
.

It then immediately follows that:

dP

dωdΩ
=
nre

2ω2

4π2c3
|n̂× ~v|2

∫

∞

−∞

dt eiωt(1−nrn̂·~v/c)

=
nre

2ω2

2πc3
|n̂× ~v|2δ

(

ω

(

1− nrn̂ · ~v

c

))

.

Note that dP/dωdΩ is independent of T ; that is, the rate of energy emission is
constant in (macroscopic) time.

If we introduce the wave number vector in the medium, ~k ≡ (nrω/c)n̂, then the
above result can be rewritten as:

dP

dωdΩ
=
nre

2ω2

2πc3
|n̂× ~v|2δ(ω −~k · ~v) .

Finally, if we integrate over dΩ = 2π d cosψ, where cosψ ≡ n̂ · v̂ and v ≡ |~v|, we
arrive at the Tamm-Frank formula:

dP

dω
=
e2ω v

c2

(

1− c2

n2
rv

2

)

Θ(nrv − c) (9)

4In Fourier integrals of the form
∫

∞

−∞
eiωtF (t)dt, where F (t) is a well behaved function, the

important range of t that contributes to the integral is of order 1/ω.
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Note that I have employed the step function,

Θ(x) ≡
{

1 , for x > 0 ,

0 , for x < 0 ,

in eq. (9) to emphasize that radiation only occurs if v > c/nr. One should in mind
that nr = nr(ω) depends on the frequency. In general, nr(ω) → 1 as ω → ∞.
Thus, Cherenkov radiation operates only over a narrow (finite) band of ω in which
nr(ω)v > c.
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