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1. [Jackson, problem 11.10]

(a) For the Lorentz boost and rotation matrices K and S show that

(ǫ̂·S)3 = −ǫ̂·S , (1)

(ǫ̂′ ·K)3 = ǫ̂′ ·K , (2)

where ǫ̂ and ǫ̂′ are any real unit 3-vectors.

We are given

S1 =




0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0


 , S2 =




0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0


 , S3 =




0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


 ,

K1 =




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 , K2 =




0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


 , K3 =




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


 .

To prove eq. (1), we evaluate the matrix ǫ̂·S explicitly,

ǫ̂·S =




0 0 0 0
0 0 −ǫ3 ǫ2
0 ǫ3 0 −ǫ1
0 −ǫ2 ǫ1 0


 ,

and then compute (ǫ̂·S)3 via matrix multiplication. Indeed,

(ǫ̂·S)2 =




0 0 0 0
0 −ǫ22 − ǫ23 ǫ1ǫ2 ǫ1ǫ3
0 ǫ1ǫ2 −ǫ21 − ǫ23 ǫ2ǫ3
0 ǫ1ǫ3 ǫ2ǫ3 −ǫ21 − ǫ22


 ,

and

(ǫ̂·S)3 = (ǫ̂·S)2ǫ̂·S = −(ǫ21 + ǫ22 + ǫ23)




0 0 0 0
0 0 −ǫ3 ǫ2
0 ǫ3 0 −ǫ1
0 −ǫ2 ǫ1 0


 = −ǫ̂·S ,

after using the fact that ǫ̂ is a real unit 3-vector, which implies that ǫ21 + ǫ22 + ǫ23 = 1.
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To prove eq. (2), we evaluate the matrix ǫ̂·K explicitly,

ǫ̂ ′
·K =




0 ǫ′1 ǫ′2 ǫ′3
ǫ′1 0 0 0
ǫ′2 0 0 0
ǫ′3 0 0 0


 , (3)

and then compute (ǫ̂ ′
·K)3 via matrix multiplication. Indeed,

(ǫ̂ ′
·K)2 =




ǫ′ 21 + ǫ′ 22 + ǫ′ 23 0 0 0
0 ǫ′ 21 ǫ′1ǫ

′
2 ǫ′1ǫ

′
3

0 ǫ′1ǫ
′
2 ǫ′ 22 ǫ′2ǫ

′
3

0 ǫ′1ǫ
′
3 ǫ′2ǫ

′
3 ǫ′ 23


 ,

and

(ǫ̂ ′
·K)3 = (ǫ̂ ′

·K)2 ǫ̂ ′
·K = (ǫ′ 21 + ǫ′ 22 + ǫ′ 23 )




0 ǫ′1 ǫ′2 ǫ′3
ǫ′1 0 0 0
ǫ′2 0 0 0
ǫ′3 0 0 0


 = ǫ̂ ′

·K ,

after using the fact that ǫ̂ ′ is a real unit 3-vector.

ALTERNATIVE SOLUTION:

The following alternative solution to part (a) is noteworthy. First, observe that the first row
and column of S1, S2 and S3 are all zeros. Hence we can simply focus on the remaining 3 × 3
block. That is, we write the Si in block matrix form,

(Si)jk =



 0 0T

k

0j −ǫijk



 , (4)

where 0T is a row vector of three zeros, 0 is a column vector of three zeros, and

ǫijk =





+1 , if (ijk) is an even permutation of (123) ,

−1 , if (ijk) is an odd permutation of (123) ,

0 , otherwise ,

is the three-dimensional Levi-Civita tensor. After excluding the first row and column, jk labels
the three remaining rows and columns of the Si.

Thus, we can compute (ǫ̂·S)3 by pretending that the first row and column do not exist. More
explicitly,1

(ǫ̂·S)3jk = (ǫ̂·S)jℓ(ǫ̂·S)ℓm(ǫ̂·S)mk = ǫi(Si)jℓ ǫp(Sp)ℓm ǫq(Sq)mk

= −ǫiǫpǫqǫijℓ ǫpℓm ǫqmk = ǫiǫpǫqǫijℓ ǫpmℓ ǫqmk

= ǫiǫpǫq(δipδjm − δimδjp)ǫqmk = ǫqǫqjk − ǫmǫjǫqǫqmk , (5)

1In eq. (5), we employ the Einstein summation convention. In this derivation, we make use of the antisymmetry
properties of the Levi-Civita tensor and employ the identity ǫijℓǫpmℓ = δipδjm − δimδjp.
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after noting that ǫiǫi = ǫ̂·ǫ̂ = 1 since ǫ̂ is an arbitrary real unit vector. We now observe
that ǫmǫjǫqǫqmk = 0 since ǫmǫq is symmetric under the interchange of m and q whereas ǫqmk is
antisymmetric under the same interchange of indices. Thus, eq. (5) yields

(ǫ̂·S)3jk = ǫqǫqjk = −ǫq(Sq)jk = −(ǫ̂·S)jk ,

which establishes eq. (1).
To establish eq. (2), we rewrite ǫ̂ ′

·K given by eq. (3) in block matrix form [analogous to the
form of the Si in eq. (4)],

(ǫ̂ ′
·K)jk =


 0 ǫ′k

ǫ′j 0jk


 , (6)

where 0jk stands for the matrix elements of the 3× 3 zero matrix. In particular, j labels the row
and k labels the column. Then,

(ǫ̂ ′
·K)3jk =



 0 ǫ′ℓ

ǫ′j 0jℓ







 0 ǫ′i

ǫ′ℓ 0ℓi







 0 ǫ′k

ǫ′i 0ik



 =



 ǫ̂ ′
·ǫ̂ ′ 0i

0T

j ǫ′jǫ
′
i







 0 ǫ′k

ǫ′i 0ik





=


 1 0i

0T

j ǫ′jǫ
′
i





 0 ǫ′k

ǫ′i 0ik


 =


 0 ǫ′k

ǫ′j ǫ̂
′
·ǫ̂ ′ 0jk


 =


 0 ǫ′k

ǫ′j 0jk


 = (ǫ̂ ′

·K)jk ,

after using the fact that ǫ̂′ is is real unit vector. Once again, eq. (2) is established.

(b) Use the result of part (a) to show that:

exp
(
−ζ β̂·K

)
= I − β̂·K sinh ζ + (β̂·K)2 [cosh ζ − 1] ,

where I is the 4 × 4 identity matrix.

We employ the series expansion for the exponential (which defines the matrix exponential),

exp
(
−ζ β̂·K

)
=

∞∑

n=0

(−ζ)n

n!
(β̂·K)n . (7)

In part (a), we established the following result: (β̂·K)3 = β̂·K. Hence, it follows that

(β̂·K)2n = (β̂·K)2 , (β̂·K)2n+1 = β̂·K , for n = 1, 2, 3, . . . .

Thus, we can rewrite the series given in eq. (7) as

exp
(
−ζ β̂·K

)
= I − β̂·K

∑

n odd
n≥1

ζn

n!
+ (β̂·K)2

∑

n even
n≥2

ζn

n!
, (8)
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after using the fact that (β̂·K)0 = I is the 4 × 4 identity matrix. Using,

∞∑

n=0

ζ2n+1

(2n+ 1)!
= sinh ζ ,

∞∑

n=0

ζ2n

(2n)!
= cosh ζ ,

and noting that the last summation in eq. (8) starts at n = 2, we end up with

exp
(
−ζ β̂·K

)
= I − β̂·K sinh ζ + (β̂·K)2 [cosh ζ − 1] , (9)

which is the desired result.

REMARKS:

To understand the significance of eq. (9), let us write it explicitly in matrix form. It is
convenient to use the block matrix form of eq. (6), where j labels the row and k labels the
column,

I =


 1 0T

k

0j δjk


 , (β̂·K)jk =


 0 β̂k

β̂j 0jk


 , (β̂·K)2jk =


 1 0T

k

0j β̂jβ̂k


 .

(10)
Then, eq. (9) yields

exp
(
−ζ β̂·K

)
=


 cosh ζ −β̂k sinh ζ

−β̂j sinh ζ δjk + β̂jβ̂k(cosh ζ − 1)


 .

In class, we identified ζ = tanh−1 β as the rapidity, which satisfies

γ =
1√

1 − β2
= cosh ζ , βγ = sinh ζ .

Hence, after writing ~β = β β̂ = (β1 , β2 , β3), it follows that

exp
(
−ζ β̂·K

)
=




γ −γβk

−γβj δjk + (γ − 1)
βjβk
β2


 , (11)

which we recognize as the boost matrix defined in eq. (11.98) of Jackson.

AN ALTERNATIVE METHOD FOR COMPUTING exp
(
−ζ β̂·K

)
:

Using eq. (3),

M ≡ −ζ β̂·K =




0 −ζβ1/β −ζβ2/β −ζβ3/β
−ζβ1/β 0 0 0
−ζβ2/β 0 0 0
−ζβ3/β 0 0 0


 , (12)
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In order to compute f(M) = expM , we shall employ the following formula of matrix algebra.
Denote the distinct eigenvalues of the n×n matrix M by λi and define the following polynomial,2

p(x) = (x− λ1)(x− λ2) · · · (x− λm) . (13)

Then, M is diagonalizable if and only if p(M) = 0n, where 0n is the n × n zero matrix. In this
case, any function of M is given by 3

f(M) =
m∑

i=1

f(λi)




m∏

j=1
j 6=i

M − λjIn

λi − λj


 , (14)

where In is the n× n identify matrix and m is the number of distinct eigenvalues.4

We first compute the eigenvalues of M , which are roots of the characteristic polynomial,

det(M − λI4) = λ4 +
ζβ1
β

det



−ζβ1/β 0 0
−ζβ2/β −λ 0
−ζβ3/β 0 −λ


− ζβ2

β
det



−ζβ1/β −λ 0
−ζβ2/β 0 0
−ζβ3/β 0 −λ




− ζβ3
β

det



−ζβ1/β −λ 0
−ζβ2/β 0 −λ
−ζβ3/β 0 0


 = λ2(λ2 − ζ2) , (15)

after using β2 = β2
1 + β2

2 + β2
3 . Thus, the three distinct eigenvalues of M are λi = 0, ζ , −ζ .

We can check that M is diagonalizable by evaluating:

p(M) = M(M − ζI4)(M + ζI4)

=




0 −ζβ1/β −ζβ2/β −ζβ3/β
−ζβ1/β 0 0 0
−ζβ2/β 0 0 0
−ζβ3/β 0 0 0







−ζ −ζβ1/β −ζβ2/β −ζβ3/β
−ζβ1/β −ζ 0 0
−ζβ2/β 0 −ζ 0
−ζβ3/β 0 0 −ζ




×




ζ −ζβ1/β −ζβ2/β ζβ3/β
−ζβ1/β ζ 0 0
−ζβ2/β 0 ζ 0
−ζβ3/β 0 0 ζ




= ζ3




1 β1/β β2/β β3/β
β1/β β2

1/β
2 β1β2/β

2 β1β3/β
2

β2/β β1β2/β
2 β2

2/β
2 β2β3/β

2

β3/β β1β3/β
2 β2β3/β

2 β2
3/β

2







1 −β1/β −β2/β β3/β
−β1/β 1 0 0
−β2/β 0 1 0
−β3/β 0 0 1


 = 04 .

(16)

2Note that m ≤ n since it is possible that the characteristic polynomial possesses one or more multiple roots.
3For example, see eqs. (7.36) and (7.3.11) of Carl D. Meyer, Matrix Analysis and Applied Linear Algebra (SIAM,

Philadelphia, PA, 2000) or Chapter V, Section 2.2 of F.R. Gantmacher, Theory of Matrices–Volume I (Chelsea
Publishing Company, New York, NY, 1959).

4If the n × n matrix M is not diagonalizable then p(M) 6= 0n, in which case the formula for f(M) is more
complicated than the one given in eq. (14).
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We now apply eq. (14) to f(M) = expM . It then follows that

expM = − 1

ζ2
(M − ζI4)(M + ζI4) + eζ

1

2ζ2
M(M + ζI4) + e−ζ 1

2ζ2
M(M − ζI4)

= I4 +

(
sinh ζ

ζ

)
M +

(
cosh ζ − 1

ζ2

)
M2 . (17)

Inserting M = −ζ β̂·K, we recover the result of eq. (9).

2. [Jackson, problem 11.13] An infinitely long straight wire of negligible cross-sectional area is
at rest and has a uniform linear charge density q0 in the inertial frame K ′. The frame K ′ (and
the wire) move with velocity ~v parallel to the direction of the wire with respect to the laboratory
frame K.

(a) Write down the electric and magnetic fields in cylindrical coordinates in the rest frame of
the wire. Using the Lorentz transformation properties of the fields, find the components of the
electric and magnetic fields in the laboratory.

In the rest frame of the wire (i.e. frame K ′), choose the z-axis to point along the wire. Then, to
compute the electric field, we draw a cylinder of length L and radius r′, whose symmetry axis
coincides with the z-axis. Applying Gauss’ law in gaussian units,

∮

S

~E ′
·n̂ da = 4πQ , (18)

where Q is the total charge enclosed inside the cylinder. In cylindrical coordinates (r′, φ′, z′),5 the

symmetry of the problem implies that ~E ′(r′, φ′, z′) = E ′(r′)ρ̂, where E ′(r′) depends only on the
radial distance from the symmetry axis. Choosing the surface S to be the surface of the cylinder,
we have n̂ = r̂, and so eq. (18) reduces to

2πρ′LE ′(r′) = 4πQ .

Defining the linear charge density (i.e. charge per unit length) by q0 = Q/L, we conclude that6

~E ′(r′) =
2q0
r′

r̂ . (19)

Since there are no moving charges in the rest frame of the wire, it follows that ~B ′ = 0 .
The transformation laws for the electric and magnetic field between reference frames K and

5We denote the radial coordinate of cylindrical coordinates in frame K ′ to be r′ rather than the more traditional
ρ′, since we reserve the letter ρ for charge density.

6The direction of the unit vectors r̂, φ̂ and ẑ are the same in frames K and K ′, so no extra primed-superscript
is required on these quantities.

6



K ′ are given by7

~E = γ
[
~E ′ − ~β × ~B ′

]
− γ2

γ + 1
~β(~β· ~E ′) ,

~B = γ
[
~B ′ + ~β × ~E ′

]
− γ2

γ + 1
~β(~β· ~B ′) .

For this problem, ~β = β ẑ. Using the results of part (a), and noting that r = r′ (since the radial
direction is perpendicular to the direction of the velocity of frame K ′ with respect to K), it follows
that

~E =
2γq0
r

r̂ , ~B =
2γβq0
r

φ̂ , (20)

where we have used ẑ ·r̂ = 0 and ẑ × r̂ = φ̂.

(b) What are the charge and current densities associated with the wire in its rest frame? In
the laboratory?

In reference frame K there are no moving charges, so that ~J ′ = 0. The corresponding charge
density is

ρ′(r′) =
q0

2πr′
δ(r′) . (21)

To check this, let us integrate over a cylinder of length L and arbitrary nonzero radius, whose
symmetry axis coincides with the z-axis. Then,

∫
ρ′(r′) dV =

∫
ρ′(r′) r′ dr′ dφ dz′ = q0

∫
dr′δ(r′)dz′ = q0L = Q .

Since Jµ = (cρ ; ~J) is a four-vector, the relevant transformation law between frames K and K ′

are:

cρ = γ(cρ′ + ~β· ~J ′) , (22)

~J = ~J ′ +
γ − 1

β2
(~β· ~J ′)~β + γ~βcρ′ . (23)

Plugging in ~J ′ = 0 and the result of eq. (21), and noting that ~β = β ẑ and r′ = r, it follows that8

ρ(r) =
γq0
2πr

δ(r) , ~J =
γβc q0
2πr

ẑ δ(r) = ρ(r)vẑ = ρ(r)~v , (24)

after using v ≡ β c.

7Eq. (11.149) of Jackson provides the equations to transform the fields from reference frame K to reference

frame K ′. To transform the fields from K ′ to K, simply change the sign of ~β.
8We can interpret q ≡ γq0 as the linear charge density as observed in reference frame K. This is not unexpected

due to the phenomenon of length contraction.
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(c) From the laboratory charge and current densities, calculate directly the electric and mag-
netic fields in the laboratory. Compare with the results of part (a).

This is an electrostatics and magnetostatics problem, so we can use Gauss’ law to compute ~E

and Ampère’s law to compute ~B. The computation of ~E is identical to the one given in part (a)
with q0 replaced by γq0. Hence, it immediately follows from eq. (19) that

~E(r) =
2γq0
r

r̂ ,

in agreement with eq. (20). Ampère’s law in gaussian units is

∮

C

~B ·d~ℓ =
4πI

c
,

where I is the current enclosed in the loop C. With ~J given by eq. (24),

I =

∫

A

~J ·n̂ da =

∫
ρ(r)v r dr dφ = γq0v ,

after noting that n̂ = ẑ points along the direction of the current flow and da = rdrdφ is the
infinitesimal area element perpendicular to the current flow. Using the symmetry of the problem,
~B = B(r)φ̂. Thus, evaluating Ampère’s law with a contour C given by a circle centered at r = 0

that lies in a plane perpendicular to the current flow, d~ℓ = rdφ~φ and

2πrB(r) =
4πI

c
=

4πγq0v

c
,

which yields

~B(r) =
2γβq0v

r
φ̂ ,

after using v = βc, in agreement with eq. (20).

3. [Jackson, problem 11.15] In a certain reference frame, a static uniform electric field E0 is
parallel to the x-axis, and a static uniform magnetic field B0 = 2E0 lies in the x–y plane, making
an angle θ with respect to the x-axis. Determine the relative velocity of a reference frame in
which the electric and magnetic fields are parallel. What are the fields in this frame for θ ≪ 1
and θ → 1

2
π?

In frame K, we have
~E = E0 x̂ , ~B = Bx x̂ +By ŷ , (25)

with
~E · ~B = |~E| | ~B| cos θ = E0B0 cos θ = 2E2

0 cos θ , (26)

after writing |~E| = E0 and | ~B| = B0 = 2E0. It follows that

Bx = 2E0 cos θ , By = 2E0 sin θ . (27)
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The electric and magnetic fields are parallel in a reference frame K ′ which is moving at a
velocity ~v ≡ c~β with respect to reference frame K. That is, the fields in K ′ satisfy,

~E ′
× ~B ′ = 0 . (28)

The electric and magnetic fields in frame K ′ are related to the corresponding fields in frame K
by eq. (11.149) of Jackson,

~E ′ = γ(~E + ~β × ~B) − γ2

γ + 1
~β(~β· ~E) , (29)

~B ′ = γ( ~B − ~β × ~E) − γ2

γ + 1
~β(~β· ~B) . (30)

These relations can be rewritten in the following form,

~E ′
‖ = ~E‖ , ~B ′

‖ = ~B‖ , (31)

~E ′
⊥ = γ

(
~E⊥ + ~β × ~B⊥

)
, ~B ′

⊥ = γ
(
~B⊥ − ~β × ~E⊥

)
. (32)

In eqs. (31) and (32), fields with a ‖ subscript are parallel to ~β and fields with a ⊥ subscript are

perpendicular to ~β. For example,

~β × ~E‖ = 0 and ~β· ~E⊥ = 0 ,

which implies that

~E‖ =
(~β· ~E)~β

β2
and ~E⊥ = ~E − (~β· ~E)~β

β2
=

~β × (~E × ~β)

β2
.

The form of eqs. (31) and (32) suggests that the relative velocity ~v should point in the z-
direction. That is,

~β = β ẑ ,

in which case ~E‖ = Ezẑ and ~B‖ = Bzẑ. Since Ez = Bz = 0, it follows from eq. (31) that
E ′

z = B′
z = 0. Using eq. (32), the transverse fields are given by

E ′
x = γ(Ex − βBy) = γE0(1 − 2β sin θ) , E ′

y = γ(Ey + βBx) = 2βγE0 cos θ , (33)

B′
x = γ(Bx + βEy) = 2γE0 cos θ , B′

y = γ(Ey + βBx) = γE0(2 sin θ − β) , (34)

after using eqs. (25)–(27). Moreover, eq. (28) implies that E ′
xB

′
y − E ′

yB
′
x = (~E ′

× ~B ′)z = 0 .
Inserting the results for the primed fields in this last equation, it then follows that

γ2E2
0(1 − 2β sin θ)(2 sin θ − β) − 4βγ2E2

0 cos2 θ = 0 .

Multiplying out the factors above and writing cos2 θ = 1− sin2 θ, the above equation simplifies to

2β2 sin θ − 5β + 2 sin θ = 0 . (35)
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This is a quadratic equation in β which is easily solved. The larger of the two roots is greater than
1, which we reject since 0 ≤ β ≤ 1 (i.e., 0 ≤ v ≤ c). The smaller of the two roots is non-negative
and less than 1. Thus, we conclude that

β =
v

c
=

5 −
√

25 − 16 sin2 θ

4 sin θ
. (36)

The two limiting cases are easily analyzed. In the case of θ ≪ 1, we can work to first order in
θ. From eq. (36) we find that β ≃ 2

5
θ. Since θ ≪ 1 it follows that β ≪ 1, in which case

γ = (1 − β2)−1/2 ≃ 1 + O(β2) .

Since we are working to first order in θ, we also must work to first order in β. In particular we
can neglect terms such as βθ. Hence, in this limiting case, eqs. (33) and (34) yield

~E ′ = 1
2
~B ′ = E0(x̂ + 2βŷ) , for β ≃ 2

5
θ ≪ 1 , (37)

where we have neglected terms that are second order (or higher) in β. Finally, in the limit of
θ → 1

2
π, eq. (36) yields β = 1

2
. Then γ = 2/

√
3, and eqs. (33) and (34) yield

~E ′ = 0 , ~B ′ =
√

3E0ŷ , for θ = 1
2
π . (38)

REMARK 1:

Recall that in class, we showed that the quantity F µνF̃µν = 1
2
ǫµναβF

µνF αβ = −4~E · ~B is a

Lorentz invariant. This means that if ~E and ~B are perpendicular in one frame, then they must
be perpendicular in all frames. Thus, if θ = 1

2
π in frame K and θ = 0 in frame K ′, then it must

be true that either the electric field or the magnetic field (or both) vanish in frame K ′, since the
only vector that is both perpendicular and parallel to a given fixed nonzero vector is the zero
vector. This is indeed the case here, as can be seen in eq. (38).

REMARK 2:

It is easy to show that eq. (36) implies that 0 ≤ β ≤ 1
2
. If we multiply the numerator and

denominator of eq. (36) by 5 +
√

25 − 16 sin2 θ, we obtain,

β =
4 sin θ

5 +
√

25 − 16 sin2 θ
.

Since the polar angle lies in the range 0 ≤ θ ≤ π or equivalently 0 ≤ sin θ ≤ 1, it follows
immediately that β ≥ 0 (where β = 0 corresponds to sin θ = 0 as expected). Finally, it is easy to
verify that

4 sin θ

5 +
√

25 − 16 sin2 θ
≤ 1

2
. (39)

Since the denominator on the left hand side above is positive, we can rewrite eq. (39) as

4 sin θ ≤ 1
2

(
5 +

√
25 − 16 sin2 θ

)
. (40)
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This inequality is manifestly true for sin θ = 0. For sin θ > 0, eq. (40) can be rearranged into the
following form

8 sin θ − 5 ≤
√

25 − 16 sin2 θ . (41)

Squaring both sides and simplifying the resulting expression then yields sin θ (sin θ − 1) ≤ 0.
Dividing both sides of the equation by sin θ (which is assumed positive) yields 0 ≤ sin θ ≤ 1,
which is valid for all polar angles θ. Hence, eq. (39) is established. The inequality becomes an
equality if sin θ = 1, in which case β = 1

2
.

REMARK 3: Non-uniqueness of the solution

In our analysis above, we found one solution to the problem. However, it is easy to see that
there are an infinite number of solutions. That is, there are an infinite number of Lorentz boost
matrices such that

F ′µν = Λ(~β)µαΛ(~β)νβF
αβ , (42)

where F αβ is the electromagnetic field strength tensor made up of the ~E and ~B fields given in
eqs. (25) and (27), F ′µν is the electromagnetic field strength tensor made up of the ~E ′ and ~B ′

fields such that ~E ′
× ~B ′ = 0, and Λ(~β) is the Lorentz boost matrix in the direction of ~β given

in eq. (11). We have already found one such boost matrix, namely Λ(βẑ), where β is given by

eq. (36). This boost matrix produces the ~E ′ and ~B ′ fields given in eqs. (33) and (34). Since ~E ′

and ~B ′ are parallel in the primed reference frame, we can write

~E ′ = E ′n̂ , ~B ′ = B′n̂ , (43)

where n̂ is the common direction of ~E ′ and ~B ′. Using eq. (33), one obtains an explicit form for
n̂ that is given by,

n̂ =
(1 − 2β sin θ)x̂ + 2β cos θ ŷ√

1 − 4β sin θ + 4β2
=

(sin θ − 2β)~E + β cos θ ~B

E0 sin θ
√

1 − 4β sin θ + 4β2
, (44)

where β is given by eq. (36). We used eqs. (25)–(27) to obtain the final expression above.
If one applies the following Lorentz transformation to reference frame K,

Λ = Λ(β ′n̂)Λ(βẑ) , (45)

then in the resulting reference frame K ′′ the ~E ′ and ~B ′ fields are also parallel, for any choice of β ′.
This result follows from eq. (31), which states that the components of the electric and magnetic
field that are parallel to the boost direction are unaffected by the Lorentz transformation. Having
found the reference frame K ′ after applying Λ(βẑ) where ~E ′ and ~B ′ are parallel and point in the
n̂ direction, one can perform an arbitrary boost in the direction parallel to n̂ without modifying
~E ′ and ~B ′ further.

One can evaluate the right hand side of eq. (45) explicitly. Here, I will make use of Pawe l
Klimas, Lecture Notes on Classical Electrodynamics, which has been posted to the Physics 214
webpage. Using eqs. (1.73) and (1.78) of Klimas’ notes,

Λ(β ′n̂)Λ(βẑ) = OΛ(~β ′′) , (46)
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where O is a Lorentz transformation corresponding to a pure rotation9 and

~β ′′ =
1

1 + ββ ′n̂·ẑ

[
β ′n̂

γ
+

(
1 +

γββ ′

γ + 1
n̂·ẑ

)
βẑ

]
, (47)

where γ ≡ (1 − β2)−1/2. In light of eq. (44), it follows that n̂·ẑ = 0, and eq. (47) simplifies to10

~β ′′ = β ′(1 − β2)1/2 n̂ + βẑ . (48)

Note that the parallel electric and magnetic field remain parallel if one transforms the reference
frame by a pure rotation. Thus, we can neglect the pure rotation O in eq. (45) to conclude that

starting from reference frame K, the application of the boost Λ(~β ′′) to produce reference frame

K ′′ yields ~E ′′ and ~B ′′ fields that are parallel.
To summarize, the complete answer to the problem posed by Jackson (although probably not

what Jackson meant to ask) is that any boost of the form Λ
(
β ′(1 − β2)1/2 n̂ + βẑ

)
, where β and

n̂ are fixed by eqs. (36) and (44), respectively, will yield a reference frame K ′′ such that the ~E ′′

and ~B ′′ fields are parallel, for any choice of the parameter β ′, where 0 ≤ β ′ ≤ 1.

ALTERNATIVE SOLUTION:

Plugging the results for the electric and magnetic fields in reference frame K ′ given by eqs. (29)
and (30) into eq. (28), one can work out the following expressions. First,

(~E + ~β× ~B)× ( ~B− ~β× ~E) = ~E× ~B− ~β
[
E2 +B2− ~β·(~E× ~B)

]
+ ~E(~β· ~E) + ~B(~β· ~B) , (49)

where E ≡ |~E| and B ≡ | ~B|. Second,

(~E + ~β × ~B) × ~β = −~β × ~E − ~β(~β· ~B) + β2 ~B , (50)

~β × ( ~B − ~β × ~E) = ~β × ~B − ~β(~β· ~E) + β2 ~E . (51)

Hence, we obtain,

~E ′
× ~B ′ = γ2 ~E × ~B − ~β

{
γ2[E2 +B2 − ~β·(~E × ~B)

]
− γ3

γ + 1

[
(~β· ~E)2 + (~β· ~B)2

]}

+γ2
[
~E(~β· ~E) + ~B(~β· ~B)

] [
1 − γβ2

γ + 1

]
− γ3

γ + 1

{
(~β· ~E)~β × ~B − (~β· ~B)~β × ~E

}
.

(52)

We can simplify the above expression by using γ2 = (1 − β2)−1, which yields β2 = (γ2 − 1)/γ2.
Hence,

1 − γβ2

γ + 1
= 1 − γ − 1

γ
=

1

γ
. (53)

9The rotation O is called the Wigner rotation. As explained below eq. (48), the parallel electric and magnetic
fields remain parallel under a pure rotation, and thus we will not require an explicit expression for the Wigner
rotation in this problem.

10If we define β′′ ≡ |~β ′′|, then β′′ 2 = β′ 2(1 − β2) + β2. One can then check that 0 ≤ β2, β′ 2 ≤ 1 implies that
0 ≤ β′′ 2 ≤ 1, as required by special relativity.
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We then end up with,

~E ′
× ~B ′ = γ2 ~E× ~B+γ

[
~E(~β· ~E)+ ~B(~β· ~B)

]
−γ2h~β− γ3

γ + 1

{
(~β· ~E)~β× ~B−(~β· ~B)~β× ~E

}
, (54)

where

h ≡ E2 +B2 − k
[
E2B2 − (~E · ~B)2

]
− γ

γ + 1

{[
k1E

2 + k2(~E · ~B)
]2

+
[
k1(~E · ~B) + k2B

2
]2
}
. (55)

The only way to satisfy ~E ′
× ~B ′ = 0 is if the right hand side of eq. (54) is proportional to

~E × ~B.11

One way of ensuring that the right hand side of eq. (54) is proportional to ~E × ~B is to take
~β to be parallel to ~E × ~B. That is, there exists a nonzero constant k such that

~β = k ~E × ~B . (56)

Note that eq. (56) implies that ~β· ~E = ~β· ~B = 0. Hence, eq. (54) simplifies to,

~E ′
× ~B ′ = γ2~β

[
1 + β2

k
− E2 − B2

]
. (57)

It then follows that

~E ′
× ~B ′ = 0 =⇒ 1 + β2

k
= E2 +B2 . (58)

Using eqs. (25) and (27), E2 +B2 = 5E2
0 and

~β = k ~E × ~B =
2E2

0k sin θ

β
~β . (59)

Thus, one can identify,

k =
β

2E2
0 sin θ

. (60)

Plugging this result into eq. (58) yields,

2 sin θ(1 + β2) = 5β , (61)

which reproduces the result previously obtained in eq. (35).

As a check of our calculation, let us verify explicitly that ~E ′ is parallel to ~B ′. Inserting
eq. (56) into eqs. (29) and (30) yields,

~E ′ = γ ~E
(
1 − kB2

)
+ γk ~B(~E · ~B) , (62)

~B ′ = γ ~B
(
1 − kE2

)
+ γk ~E(~E · ~B) . (63)

11Recall that if {~vi} is a set of linearly independent vectors, then the only solution to
∑

i ci~vi = 0 is ci = 0 for
all i.
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In light of eqs. (25)–(27) and eq. (60),

~E ′ = γE0

[
(1 − 2β sin θ)x̂ + 2β cos θ ŷ

]
, (64)

~B ′ = γE0

[
2 cos θ x̂ + (2 sin θ − β)ŷ

]
. (65)

We can now check that
~E ′

× ~B ′ = [2 sin θ(1 + β2) − 5β]ẑ = 0 , (66)

after employing eq. (61), which completes the check of the calculation.
The two limiting cases are now easily analyzed. In the case of θ ≪ 1, we can work to first

order in θ. As noted below eq. (36), β ≃ 2
5
θ and γ = (1 − β2)−1/2 ≃ 1 + O(β2). Since we are

working to first order in θ, we also must work to first order in β. In particular we can neglect
terms such as βθ. Hence, in this limiting case, eqs. (64) and (65) yield

~E ′ = 1
2
~B ′ = E0(x̂ + 2βŷ) , for β ≃ 2

5
θ ≪ 1 , (67)

where we have neglected terms that are second order (or higher) in β. Finally, in the limit of
θ → 1

2
π, eq. (36) yields β = 1

2
. Then γ = 2/

√
3, and eqs. (64) and (65) yield

~E ′ = 0 , ~B ′ =
√

3E0ŷ , for θ = 1
2
π . (68)

Thus, we have reproduced the results of eqs. (37) and (38).

REMARK 4:

Another strategy to find all possible boosts that result in parallel electric and magnetic fields
is to start with eqs. (29) and (30) and impose the condition ~E ′

× ~B ′ = 0 to determine the most

general form for the boost. We again denote the boost parameter by ~β.
Since ~E, ~B and ~E × ~B are three linearly independent vectors, ~β can be written in the

following form,
~β = k1 ~E + k2 ~B + k ~E × ~B , (69)

where the constants k1, k2 and k are to be determined. It then follows that,

~β· ~E = E2k1 + (~E · ~B)k2 , ~β· ~B = (~E · ~B)k1 +B2k2 ,

~β × ~E = −k2 ~E × ~B − k
[
(~E · ~B)~E − E2 ~B

]
, ~β × ~B = k1 ~E × ~B + k

[
(~E · ~B) ~B −B2 ~E

]
.

~β·(~E × ~B) = k|~E × ~B|2 = k
[
E2B2 − (~E · ~B)2

]
,

and β ≡ |~β|, where

β = k21E
2 + 2k1k2(~E · ~B) + k22B

2 + k2
[
E2B2 − (~E · ~B)2

]
. (70)

This last equation is needed to obtain an expression for γ ≡ (1 − β2)−1/2. Plugging the above
results into eq. (54) yields,

~E ′
× ~B ′ = c1 ~E + c2 ~B + c3 ~E × ~B , (71)
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in reference frame K ′′, where

c1 = −γ2k1h + γ
[
k1E

2 + k2(~E · ~B)
]

+
γ3kk1
γ + 1

[
E2B2 − (~E · ~B)2

]
, (72)

c2 = −γ2k2h + γ
[
k1(~E · ~B) + k2B

2
]

+
γ3kk2
γ + 1

[
E2B2 − (~E · ~B)2

]
, (73)

c3 = γ2(1 − kh) − γ3

γ + 1

[
k21E

2 + 2k1k2(~E · ~B) + k22B
2
]
. (74)

and h is given by eq. (55), which we rewrite below for the reader’s convenience,

h ≡ E2 +B2 − k
[
E2B2 − (~E · ~B)2

]
− γ

γ + 1

{[
k1E

2 + k2(~E · ~B)
]2

+
[
k1(~E · ~B) + k2B

2
]2
}
. (75)

To find solutions {k1, k2, k} to the equation ~E ′
× ~B ′ = 0, we set c1 = c2 = c3 = 0. This

yields three nonlinear equations for the three unknowns, k1, k2 and k. The one solution obtained
previously with ~β = β0ẑ corresponds to k1 = k2 = 0 and kh = 1, where k is given by eq. (60).
Here, we write β0 to distinguish this special case from the general case under consideration. In
this special case, c1 = c2 = 0 automatically and c3 = 0 yields kh = 1 which implies that

k(E2 +B2) − k2
[
E2B2 − (~E · ~B)2

]
= 1 . (76)

Using eqs. (25)–(27), E2 +B2 = 5E2
0 and E2B2 − (~E · ~B)2 = 4E4

0 sin2 θ. Hence,

4E4
0k

2 sin2 θ − 5E2
0k + 1 = 0 . (77)

Using eq. (60) to eliminate k (replacing β with β0 as noted above), eq. (56) is equivalent to

β2
0 −

5β0
2 sin θ

+ 1 = 0 , (78)

which yields eq. (61) for the special case of ~β = β0ẑ, as expected.
More generally, one can verify that eq. (48) provides a family of solutions to eqs. (72)–(74)

with c1 = c2 = c3 = 0. In light of eqs. (44) and (48), we can identify,

k1 =
β ′(sin θ − 2β0)

γ0E0 sin θ
√

1 − 4β0 sin θ + 4β2
0

, (79)

k2 =
β ′β0 cos θ

γ0E0 sin θ
√

1 − 4β0 sin θ + 4β2
0

, (80)

k =
β0

2E2
0 sin θ

, (81)

where β0 is given by eq. (78), γ0 ≡ (1−β2
0)−1/2 and β ′ is an arbitrary number such that 0 ≤ β ′ ≤ 1.

I have checked using Mathematica that after plugging in eqs. (79)–(81) into eqs. (72)–(75) along
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with E2 = E2
0 , B2 = 4E2

0 , and ~E · ~B = 2E2
0 cos θ, the end result is,

c1 = − 2γCE0

[
2(β2

0 + 1) sin θ − 5β0
]

(1 + γ) sin θ

[
γ +

1 − 1
2
β0 sin θ − C2 cos2 θ

1 − β2
0 − C2(1 − 4β0 sin θ + 4β2

0)

]
, (82)

c2 =
γCE0 cos θ

[
2(β2

0 + 1) sin θ − 5β0
]

(1 + γ) sin θ

[
γ +

1 − C2(1 − 2β0 sin θ)

1 − β2
0 − C2(1 − 4β0 sin θ + 4β2

0

]
, (83)

c3 =
γ2
[
2(β2

0 + 1) sin θ − 5β0
][

1 + γ − γC2(1 − 2β0 sin θ)
]

2(1 + γ) sin θ
, (84)

where

C ≡ β ′

γ0
√

1 − 4β0 sin θ + 4β2
0

. (85)

Indeed, if β0 satisfies eq. (78) then we find that c1 = c2 = c3 = 0. Thus, I have verified that a

boost to the frame with boost parameter given by eq. (48) yields ~E ′
× ~B ′ = 0. I believe that

{k1, k2, k} given by eqs. (79)–(81) provides all possible solutions, but I do not have a proof of this
statement.

4. [Jackson, problem 11.18] The electric and magnetic fields of a particle of charge q moving
in a straight line with speed v = βc, given by eq. (11.52) of Jackson, become more and more
concentrated as β → 1, as indicated in Fig. 11.9 on p. 561 of Jackson. Choose axes so that
the charge moves along the z axis in the positive direction, passing the origin at t = 0. Let the
spatial coordinates of the observation point be (x, y, z) and define the transverse vector ~r⊥, with
components x and y. Consider the fields and the source in the limit of β = 1.

(a) Show that the fields can be written as

~E = 2q
~r⊥

r2⊥
δ(ct− z) , ~B = 2q

v̂ × ~r⊥

r2⊥
δ(ct− z) , (86)

where v̂ is a unit vector in the direction of the particle’s velocity.

We begin with eq. (11.154) on p. 560 of Jackson,

~E =
q ~R

R3γ2(1 − β2 sin2 ψ)3/2
, (87)

where ψ is the angle between the vectors ~v and ~R. I have modified Jackson’s notation by
employing the symbol ~R for the vector that points from the charge q to the observation point ~r =
(x, y, z) in reference frame K.12 Eq. (87) was also derived in class along with the corresponding
result for the magnetic field,

~B =
q(~v × ~R)

cR3γ2(1 − β2 sin2 ψ)3/2
. (88)

12Jackson denotes the vector that points from the charge q to the observation point (x, y, z) by ~r. However,
I prefer to employ ~r to represent the vector that points from the origin of reference frame K to the observation
point, as shown in Fig. 1.
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q

(x, y, z)

~R

~vt

~r

x

z

ψ

Figure 1: A charge q moving at constant velocity ~v in the z-direction as seen from reference frame
K. The angle ψ is defined so that v̂ ·R̂ = cosψ.

The reference frame K is exhibited in Fig. 1. It is evident from this figure that

~R = ~r − ~vt . (89)

The velocity vector is taken to lie along the z-direction. That is, ~v = vẑ.
It is convenient to introduce the notation where

~r⊥ = xx̂ + yŷ , ~r‖ = z~z , (90)

so that ~r⊥·~v = 0 and ~r‖×~v = 0. Likewise, we can resolve the vector ~R into components parallel
and perpendicular to the velocity vector,

~R = ~R‖ + ~R⊥ ,

where
~R‖ ≡ R‖ẑ = (z − vt)ẑ , ~R⊥ = ~r⊥ . (91)

after making use of eq. (89). In particular, note that | ~R⊥| ≡ R⊥ = R sinψ. It follows that

R3(1 − β2 sin2 ψ)3/2 = (R2 − β2R2 sin2 ψ)3/2 = (R2
⊥ +R2

‖ − β2R2
⊥)3/2

= [R2
‖ +R2

⊥(1 − β2)]3/2 = (R2
‖ +R2

⊥/γ
2)3/2 . (92)

Note that in obtaining eq. (92) we used R2 = R2
⊥ + R2

‖ and γ ≡ (1 − β2)−1/2. Moreover, since

~R⊥ = ~r⊥ [cf. eq. (91)], we may replace R⊥ with r⊥ ≡ |~r⊥| = (x2 + y2)1/2 in the above formulae.
Eqs. (87), (91) and (92) then yield

~E =
γq

[
~r⊥ + (z − vt)ẑ

]

(γ2R2
‖ + r2⊥)3/2

. (93)

Likewise, eqs.(88), (91) and (92) yield

~B =
γq(~v × ~r⊥)

c(γ2R2
‖ + r2⊥)3/2

. (94)
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Consider the limit of β → 1. In this limit, γ → ∞, and we see that

lim
γ→∞

γ

(γ2R2
‖ + r2⊥)3/2

=

{
0 , if R‖ 6= 0 ,

∞ , if R‖ = 0 .

This implies that

lim
γ→∞

γ

(γ2R2
‖ + r2⊥)3/2

= kδ(R‖) , (95)

for some constant k. Note that in light of eq. (91),

lim
γ→∞

R‖ = z − ct ,

since γ → ∞ in the limit of v → c. To determine k, we integrate eq. (95) from −∞ to ∞, since R‖

can be any real number (either positive, negative or zero) depending on the value of the time t.
Thus, employing the substitution u = γR‖,

k =

∫ ∞

−∞

γ dR‖

(γ2R2
‖ + r2⊥)3/2

=

∫ ∞

−∞

du

(u2 + r2⊥)3/2
=

u

r2⊥(u2 + r2⊥)1/2

∣∣∣∣
∞

−∞

=
2

r2⊥
.

Hence, we conclude that

lim
γ→∞

γ

(γ2R2
‖ + r2⊥)3/2

=
2

r2⊥
δ(z − ct) .

Inserting this result back into eqs. (93) and (94) yields

~E = 2q
~r⊥

r2⊥
δ(z − ct) , ~B = 2q

v̂ × ~r⊥

r2⊥
δ(z − ct) . (96)

In obtaining ~E above, we noted that in the limit of v → c, the z-component of the electric field
is proportional to (z − ct)δ(z − ct) = 0 due to a property of the delta function. In obtaining ~B

above, we noted that limv→c ~v/c = v̂. Finally, since the delta function is an even function of its
argument, we can write δ(z − ct) = δ(ct− z), and eq. (86) is verified.

(b) Show by substitution into the Maxwell equations that these fields are consistent with the
4-vector source density

Jα = qcvαδ(2)(~r⊥)δ(ct− z) ,

where the 4-vector vα = (1 ; v̂).

The four-vector current is given by Jµ = (cρ ; ~J). Hence, using the Maxwell equations in gaussian
units,

~∇· ~E = 4πρ =
4πJ0

c
.

Hence, using eq. (96) and noting that Ez = 0, it follows that

J0 =
c

4π
~∇· ~E =

c

4π

(
~∇⊥ ·

~E +
∂Ez

∂z

)
=
qc

2π
δ(z − ct)~∇⊥ ·

(
~r⊥

r2⊥

)
, (97)
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where
~∇⊥ ≡ x̂ ∂/∂x + ŷ ∂/∂y . (98)

For ~r⊥ ≡ x x̂ + y ŷ 6= 0, an elementary computation yields

~∇⊥ ·

(
~r⊥

r2⊥

)
=

∂

∂x

(
x

x2 + y2

)
+

∂

∂y

(
y

x2 + y2

)
=

y2 − x2

(x2 + y2)2
+

x2 − y2

(x2 + y2)2
= 0 . (99)

To determine the behavior at ~r⊥ = 0, we consider the two-dimensional analogue of the divergence
theorem, ∫

A

dxdy ~∇⊥ ·

(
~r⊥

r2⊥

)
=

∮

C

r⊥dφ
~r⊥

r2⊥
·r̂⊥ =

∫ 2π

0

dφ = 2π , (100)

where A is a circular disk and C is the circular boundary of the disk. Note that r̂⊥ = ~r⊥/r⊥ is
the outward normal to the circular boundary.

Eqs. (99) and (100) imply that

~∇⊥ ·

(
~r⊥

r2⊥

)
= 2πδ(2)(~r⊥) , (101)

where δ(2)(~r⊥) is a two-dimensional delta function. Inserting this result into eq. (97), we end up
with

J0 = qcδ(2)(~r⊥)δ(z − ct) . (102)

Next, we employ the Maxwell equation,

~∇× ~B − 1

c

∂ ~E

∂t
=

4π

c
~J , (103)

to evaluate ~J . First, we compute

v̂ × ~r⊥ = ẑ × (xx̂ + yŷ) = xŷ − yx̂ , (104)

where we have used the fact that ~v points in the z direction. It then follows that

~∇×

[
v̂ × ~r⊥

r2⊥
δ(z − ct)

]
= det




x̂ ŷ ẑ

∂

∂x

∂

∂y

∂

∂z
−y

x2 + y2
δ(z − ct)

x

x2 + y2
δ(z − ct) 0



. (105)

Evaluating the determinant and making use of eqs. (90), (98) and (101) yields,

~∇×

[
v̂ × ~r⊥

r2⊥
δ(z − ct)

]
= −xx̂ + yŷ

x2 + y2
δ′(z − ct) +

{
∂

∂x

(
x

x2 + y2

)
+

∂

∂y

(
y

x2 + y2

)}
δ(z − ct)

= −~r⊥

r2⊥
δ′(z − ct) + ẑ ~∇⊥ ·

(
~r⊥

r2⊥

)
δ(z − ct)

= −~r⊥

r2⊥
δ′(z − ct) + 2πẑ δ(2)(~r⊥)δ(z − ct) . (106)

19



The prime refers to differentiation with respect to z. Finally, we compute

∂

∂t

(
~r⊥

r2⊥
δ(z − ct)

)
= −c ∂

∂z

(
~r⊥

r2⊥
δ(z − ct)

)
= −c~r⊥

r2⊥
δ′(z − ct) . (107)

Inserting eq. (96) into eq. (103) and using eqs. (106) and (107), we obtain

~J =
qc

2π
~∇×

[
v̂ × ~r⊥

r2⊥
δ(z − ct)

]
− q

2π

∂

∂t

(
~r⊥

r2⊥
δ(z − ct)

)

=
qc

2π

{
−~r⊥

r2⊥
δ′(z − ct) + 2πẑ δ(2)(~r⊥)δ(z − ct) +

~r⊥

r2⊥
δ′(z − ct)

}

= qcv̂ δ(2)(~r⊥)δ(z − ct) , (108)

after using the fact that v̂ = ẑ. Combining eqs. (102) and (108), we can write

Jα = qcvαδ(2)(~r⊥)δ(z − ct) ,

where the four-vector vα = (1 ; v̂).

(c) Show that the fields of part (a) are derivable from either of the following 4-vector potentials:

A0 = Az = −2qδ(ct− z) ln(λr⊥) , ~A⊥ = 0 , (109)

or
A0 = Az = 0 , ~A⊥ = −2qΘ(ct− z)~∇⊥ ln(λr⊥) , (110)

where λ is an irrelevant parameter setting the scale of the logarithm. Show that the two potentials
differ by a gauge transformation and find the corresponding gauge function χ.

The four-vector potential is Aµ = (Φ ; ~A). Given the four-vector potential, the electromagnetic
fields are determined by

~E = −~∇A0 − 1

c

∂ ~A

∂t
, ~B = ~∇× ~A .

Inserting the scalar and vector potentials given in eq. (109),

~E = 2q~∇
[
δ(ct− z) ln(λr⊥)

]
+

2q

c
ẑ ln(λr⊥)

∂

∂t
δ(ct− z)

= 2qδ(z − ct)

(
x̂
∂

∂x
+ ŷ

∂

∂y

)[
1
2

ln(x2 + y2) + lnλ
]

+ 2qẑ ln(λr⊥)

(
∂

∂z
+

1

c

∂

∂t

)
δ(ct− z)

= 2q
~r⊥

r2⊥
δ(z − ct) ,
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after using ~r⊥ = xx̂ + yŷ and r2⊥ = x2 + y2. In particular, note that
(
∂

∂z
+

1

c

∂

∂t

)
f(ct− z) = 0 ,

for any function of ct− z. Using eq. (109) to compute the magnetic field,

~B = ~∇× ~A = det




x̂ ŷ ẑ

∂

∂x

∂

∂y

∂

∂z

0 0 −2q ln(λr⊥)δ(ct− z)




= −2qδ(ct− z)

{
x̂
∂

∂y
ln(λr⊥) − ŷ

∂

∂x
ln(λr⊥)

}

= −2qδ(ct− z)

{
x̂
∂

∂y

[
1
2

ln(x2 + y2) + lnλ
]
− ŷ

∂

∂x

[
1
2

ln(x2 + y2) + lnλ
]}

= −2q

r2⊥
(yx̂− xŷ)δ(ct− z) = 2q

v̂ × ~r⊥

r2⊥
δ(ct− z) ,

after employing eq. (104).
Repeating these calculations using eq. (110),

~E = −1

c

∂ ~A⊥

∂t
= 2qδ(ct− z)

(
x̂
∂

∂x
+ ŷ

∂

∂y

)[
1
2

ln(x2 + y2) + lnλ
]

= 2q
~r⊥

r2⊥
δ(ct− z) ,

after using the relation between the delta function and the step function, δ(x) =
d

dx
Θ(x). In the

computation of the magnetic field, we require the following result:

~∇⊥ ln(λr⊥) =

(
x̂
∂

∂x
+ ŷ

∂

∂y

)[
1
2

ln(x2 + y2) + lnλ
]

=
xx̂ + yŷ

x2 + y2
.

Hence, it follows that

~B = ~∇× ~A = −2q det




x̂ ŷ ẑ

∂

∂x

∂

∂y

∂

∂z

Θ(ct− z)
x

x2 + y2
Θ(ct− z)

y

x2 + y2
0




=
yx̂− xŷ

x2 + y2
δ(ct− z) + ẑ Θ(ct− z)

{
∂

∂x

(
y

x2 + y2

)
− ∂

∂y

(
x

x2 + y2

)}

= 2q
v̂ × ~r⊥

r2⊥
δ(ct− z) ,
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after employing eq. (104) and noting that

∂

∂x

(
y

x2 + y2

)
− ∂

∂y

(
x

x2 + y2

)
= − 2xy

(x2 + y2)2
+

2xy

(x2 + y2)2
= 0 .

Finally, we demonstrate that eqs. (109) and (110) differ by a gauge transformation. Under a
gauge transformation (using gaussian units),

~A → ~A ′ = ~A + ~∇χ , A0 → A′ 0 = A0 − 1

c

∂χ

∂t
.

Denoting Aµ by eq. (109) and A′µ by eq. (110), it follows that

∂χ

∂t
= −2qcδ(ct− z) ln(λr⊥) ,

~∇⊥χ = −2qΘ(ct− z)~∇⊥ ln(λr⊥) ,

∂χ

∂z
= 2qδ(ct− z) ln(λr⊥) .

The solution to these equations can be determined by inspection,

χ(~x, t) = −2qΘ(ct− z) ln(λr⊥) ,

up to an overall additive constant.

5. [Jackson, problem 11.27]

(a) A charge density ρ′ of zero total charge, but with a dipole moment ~p ′, exists in reference

frame K ′. There is no current density in K ′. The frame K ′ moves with velocity ~v = ~βc in the
frame K. Find the charge and current densities ρ and ~J in the frame K and show that there is a
magnetic dipole moment ~m = 1

2
(~p ′ × ~β), correct to first order in β. What is the electric dipole

moment ~p in K to the same order in β?

We shall assume that in frame K ′, we have ~J ′ = 0 and the charge density, ρ′(~x ′) is time-
independent. Furthermore, we assume that the total charge in frame K ′ is zero, i.e.

∫
ρ′(~x ′) d3x′ = 0 , (111)

whereas the electric dipole moment in frame K ′, denoted by ~p ′, is assumed to be nonzero. By
definition, the electric dipole moment is given by

~p ′ =

∫
~x ′ ρ′(~x ′) d3x′ . (112)

Frame K ′ is assumed to move with velocity ~v = ~βc with respect to frame K. We shall employ
eqs. (22) and (23), which we repeat here:

cρ = γ(cρ′ + ~β· ~J ′) , (113)

~J = ~J ′ +
γ − 1

β2
(~β· ~J ′)~β + γ~βcρ′ . (114)
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Setting ~J ′ = 0, it follows that

ρ(~x) = γρ′(~x ′) , ~J(~x) = γ~βcρ′(~x ′) = ~βcρ(~x) . (115)

Hence, the electric dipole moment in frame K is given by

~p =

∫
~x ρ(~x) d3x , (116)

and the magnetic dipole moment is defined (in gaussian units) in frame K as

~m =
1

2c

∫
~x× ~J(~x) d3x = 1

2

∫
~x× ~β ρ(~x) d3x = 1

2

{∫
~x ρ(~x) d3x

}
× ~β ,

after employing eq. (115) in the second step above. In light of eq. (116), it follows that

~m = 1
2
~p× ~β . (117)

In order to relate ~p to ~p ′, we need to compare ρ(~x) and ρ′(~x ′). Eq. (11.19) of Jackson gives

the four-vector x′ µ in terms of xµ. The inverse relation is obtained by changing the sign of ~β,
which yields

x0 = γ(x′0 + ~β·~x ′) , ~x = ~x ′ +
γ − 1

β2
(~β·~x ′)~β + γ~βx′0 . (118)

Working to first order in β, we can set γ = (1 − β2)−1/2 ≃ 1, and

x0 ≃ x′0 + ~β·~x ′ , ~x ≃ ~x ′+ ~βx′0 . (119)

In the same approximation, d3x′ ≃ d3x and ρ(~x) ≃ ρ′(~x ′). Hence, using eq. (111),

~p =

∫
~x ρ(~x) d3x ≃

∫
(~x ′+ ~βx′0)ρ

′(~x ′) d3x′ =

∫
~x ′ρ′(~x ′) d3x′ = ~p ′ . (120)

to first order in β. Using eqs. (117) and (120), we conclude that to first order in β,

~m = 1
2
~p ′ × ~β .

(b) Instead of the charge density, but no current density, in K ′, consider no charge density,

but a current density ~J ′ that has a magnetic dipole moment ~m′. Find the charge and current
densities in K and show that to first order in β there is an electric dipole moment ~p = ~β × ~m ′

in addition to the magnetic dipole moment.

Suppose that ρ′(~x ′) = 0 in frame K ′. Then, using the continuity equation

~∇· ~J ′ +
∂ρ′

∂t
= 0 , (121)

and it follows that ~J ′ is a steady current; that is,

~∇ ′
· ~J ′(~x ′) = 0 . (122)
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The magnetic dipole moment in frame K ′ is nonzero and is denoted by ~m ′. By definition, the
magnetic dipole moment is given by

~m′ =
1

2c

∫
~x ′

× ~J ′(~x ′) d3x′ . (123)

Then, using eqs. (113) and (114),

ρ(~x) =
γ

c
~β· ~J ′(~x ′) , (124)

~J(~x) = ~J ′(~x ′) +
γ − 1

β2
[~β· ~J ′(~x ′)] ~β . (125)

Taking the dot product of eq. (125) with ~β,

~β· ~J(~x) = γ~β· ~J ′(~x ′) . (126)

Inserting this result into eq. (124) yields

ρ(~x) =
~β

c
· ~J(~x) . (127)

Using eq. (127), the electric dipole moment in frame K is given by

~p =

∫
~x ρ(~x) d3x =

1

c

∫
~x
(
~β· ~J(~x)

)
d3x . (128)

Working to first order in β, we can set γ = (1 − β2)−1/2 ≃ 1, in which case d3x′ ≃ d3x and
~β· ~J(~x) = ~β· ~J ′(~x ′). Hence,

~p ≃ 1

c

∫
~x
(
~β· ~J ′(~x ′)

)
d3x′ .

We now apply using eq. (119) which yields,

~p ≃ 1

c

∫
~x ′

(
~β· ~J ′(~x ′)

)
d3x′ +

~β x′0
c

~β·

∫
~J ′(~x ′) d3x′ . (129)

This result can be simplified by using the following trick. One can express the ith component of
the current as follows,

J ′ i = ∇′
k(J ′ kx′ i) − x′ i ~∇

′
· ~J ′ = ∇′

k(J ′ kx′ i) , (130)

after applying eq. (122) in the final step. Thus,
∫
J ′ i d3x′ =

∫
∇′

k(J
′ kx′ i) d3x′ = 0 , (131)

after converting to a surface integral at infinity, which vanishes under the assumption of a localized
current. Hence, the last term in eq. (129) vanishes, and we are left with

~p ≃ 1

c

∫
~x ′

(
~β· ~J ′(~x ′)

)
d3x′ . (132)
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We can rewrite the integrand of eq. (132) by using the vector identity

~x ′
(
~β· ~J ′(~x ′)

)
= ~β ×

(
~x ′

× ~J ′(~x ′)
)

+ ~J ′(~x ′)(~β·~x ′) .

Inserting this result into eq. (132) and using eq. (123), it follows that

~p = 2~β × ~m ′ +
1

c

∫
~J ′(~x ′)(~β·~x ′) d3x′ . (133)

The remaining integral can evaluated by employing eq. (130) for ~J ′. In particular, the ith
component of the integral in eq. (133) is

1

c

∫
J ′ iβjx′ j d3x′ =

βj

c

∫
x′ j ∇′

k(J ′ kx′ i) d3x′ = −β
j

c

∫
J ′ kx′ i ∇′

k(x′ j) d3x′ = −β
j

c

∫
J ′ jx′ i d3x′ ,

(134)
after an integration by parts, where the surface integral at infinity can be dropped as it vanishes
for a localized current. In the final step of eq. (134), we used ∇′

k(x′ j) = δjk and summed over the
repeated index k. Thus, eq. (134) yields

∫
~J ′(~x ′)(~β·~x ′) d3x′ = −1

c

∫
~x ′

(
~β· ~J ′(~x ′

)
d3x′ ≃ −~p ,

where we have used eq. (132) in the final step. Inserting this result back into eq. (133) yields

~p = 2~β × ~m ′ − ~p .

Solving for ~p, we end up with
~p = ~β × ~m ′ . (135)

For completeness, we shall evaluate ~m in terms of ~m′, keeping only terms to first order in β.
In this approximation, we have d3x ≃ d3x′ and ~J(~x) = ~J ′(~x ′). Using these results along with
eq. (119), it follows that

~m =
1

2c

∫
~x× ~J(~x) d3x =

1

2c

∫
~x× ~J ′(~x ′) d3x′ =

1

2c

∫
(~x ′ + ~βx′0) × ~J ′(~x ′) d3x′

= ~m′ +
x′0
2c

~β ×

∫
~J ′(~x ′) d3x′ ,

after using eq. (123). However, in light of eq. (131), the remaining integral above vanishes. Hence,
to first order in β,

~m = ~m′ . (136)
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ADDENDUM to Problem 5

Although Jackson only asks for the the results to first order in β, it is not too hard to derive
the exact results. This derivation will be given below.

(a) By assumption, ρ′(~x ′) is a time-independent charge density in frame K ′ which satisfies
eq. (111) [i.e. the total charge vanishes]. We are asked to compute ~p and ~m in frame K. By
assumption, this means that we should evaluate these quantities at a fixed time x0 in frame K.
Using eq. (118), it follows that

x′0 =
x0
γ

− ~β·~x ′ .

Inserting this result back into eq. (118) then yields

~x = ~x ′ +

[
γ − 1

β2
− γ

]
(~β·~x ′)~β + ~βx0 .

We can simplify this expression by noting that γ = (1 − β2)−1/2 implies that β2γ2 = γ2 − 1.
Substituting for β2 above,

γ − 1

β2
− γ = − γ

γ + 1
. (137)

Hence,

~x = ~x ′ − γ

γ + 1
(~β·~x ′)~β + ~βx0 . (138)

We can evaluate the Jacobian of the transformation, eq. (138),13

∂xi
∂x′j

= δij −
γ

γ + 1
βiβj , (139)

which we evaluate at fixed x0. To compute the determinant of the Jacobian, we use the following
general result which is easily proved (see the Appendix following this addendum):

det(δij − aiaj) = 1 − |~a|2 .

Hence,

det

(
∂xi
∂x′j

)
= 1 − γβ2

γ + 1
=

1

γ + 1

[
γ + 1 − γ2 − 1

γ

]
=

1

γ
.

It follows that

d3x = det

(
∂xi
∂x′j

)
d3x′ =

d3x′

γ
, (140)

which is just the well-known length contraction in special relativity. Using eqs. (115) and (140),
it follows that the charge dq located inside an infinitesimal volume element is

dq = ρ(~x) d3x = ρ′(~x ′) d3x′ , (141)

13In eq. (139), we do not distinguish between lowered and raised indices, as all involved quantities are three-
dimensional.
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since the factors of γ cancel out. Eq. (141) is expected since the electric charge is a Lorentz scalar,
which must be independent of the reference frame used to evaluate it.

We now can compute ~p in frame K. Using eqs. (138) and (141),

~p =

∫
~x ρ(~x) d3x =

∫
~x ρ′(~x ′) d3x′ =

∫ [
~x ′ − γ

γ + 1
(~β·~x ′)~β + ~βx0

]
ρ′(~x ′) d3x′ . (142)

Using eq. (112), it follows that

~p = ~p ′ − γ

γ + 1
(~β·~p ′)~β (143)

where we have used eq. (111) [i.e., the total charge in frame K ′ vanishes] to eliminate the last
term in eq. (142). Indeed, if we work to first order in β, then the second term on the right hand
side of eq. (143) can be dropped and we recover the result of eq. (120).

To obtain ~m, we start with the exact result obtained in eq. (117). Inserting eq. (143) for ~p

and using ~β × ~β = 0, it follows that14

~m = 1
2
~p ′ × ~β , (144)

which is exact to all orders in β.

REMARK:

One can derive eq. (143) more directly as follows. Using eqs. (115) and (118),

~p =

∫
~x ρ(~x) d3x = γ

∫ [
~x ′ +

γ − 1

β2
(~β·~x ′)~β + γ~βx′0

]
ρ′(~x ′) d3x

= γ

∫ [
~x ′ +

γ − 1

β2
(~β·~x ′)~β + γ~βx′0

]
ρ′(~x ′) δ(x0 − ct)d4x .

In the last step, I inserted the integral
∫
δ(x0− ct)dx0 = 1 which does not change the result. This

is useful, since d4x = d4x′ = d3x′dx′0. Using eq. (118) to express x0 in terms of x′0,

~p =

∫ [
~x ′ +

γ − 1

β2
(~β·~x ′)~β + γ~βx′0

]
ρ′(~x ′) δ

(
x′0 + ~β·~x ′ − ct

γ

)
d3x′dx′0 ,

after writing γδ(x0 − ct) = δ([x0 − ct]/γ) = δ(x′0 + ~β·~x ′ − ct/γ). Integrating over x′0 yields

~p =

∫ [
~x ′ +

(
γ − 1

β2
− γ

)
(~β·~x ′)~β

]
ρ′(~x ′) d3x′ + ct~β

∫
ρ′(~x ′) d3x′ .

Using eqs. (111) and (137) along with ~p ′ =
∫
~x ′ρ′(~x ′) d3x′, we end up with

~p = ~p ′ − γ

γ + 1
(~β·~p ′)~β ,

which reproduces eq. (143). Of course, the two derivations are equivalent.
14In the literature, one often finds the result of eq. (144) quoted without the factor of 1

2
. For a discussion of this

discrepancy, see V. Hnizdo, Magnetic dipole moment of a moving electric dipole, American Journal of Physics 80,
645–647 (2012).
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(b) By assumption, ~J ′(~x ′) is a time-independent, steady current in frame K ′ which satisfies
eq. (122). We are asked to compute ~p and ~m in frame K. In this computation, it will be quite
useful to derive a formula for the following integral,

∫
x′ iJ ′j d3x′ .

This can be accomplished using a identity similar to that of eq. (130). First we write

x′ iJ ′ j = 1
2
(x′ iJ ′j + x′ jJ ′ i) + 1

2
(x′ iJ ′ j − x′ jJ ′ i) .

We then observe that

x′ iJ ′ j + x′ jJ ′ i = ∇′
k(x

′ ix′ jJ ′ k) + x′ ix′ j ~∇
′
· ~J ′ = ∇′

k(x
′ ix′ jJ ′ k) ,

after applying eq. (122), and

x′ iJ ′j − x′ jJ ′ i = ǫijk(~x ′
× ~J ′)k .

Consequently,
∫
x′ iJ ′j d3x′ = 1

2

∫
(x′ iJ ′ j + x′ jJ ′ i) d3x′ + 1

2

∫
(x′ iJ ′ j − x′ jJ ′ i) d3x′

= 1
2

∫
∇′

k(x′ ix′ jJ ′ k) d3x′ + 1
2
ǫijk

∫
(~x ′

× ~J ′)k d3x′ . (145)

The first term in the second line of eq. (145) can be converted into a surface integral at infinity,
which vanishes under the assumption that the current is localized. The second term is related to
the magnetic moment via eq. (123). Hence,

1

c

∫
x′ iJ ′j d3x′ = ǫijkm′ k . (146)

We are now ready to compute ~m. We again perform the computation at fixed x0, in which
case we can use eqs. (138) and (140). Employing eq. (125),

~m =
1

2c

∫
~x× ~J(~x) d3x

=
1

2γc

∫ [
~x ′ − γ

γ + 1
(~β·~x ′)~β + ~βx0

]
×

{
~J ′(~x ′) +

γ − 1

β2
[~β· ~J ′(~x ′)] ~β

}
d3x′

=
~m ′

γ
+

1

2γc

∫ {
γ − 1

β2
[~β· ~J ′(~x ′)]~x ′

× ~β − γ

γ + 1
(~β·~x ′)~β × ~J ′(~x ′) + x0~β × ~J ′(~x ′)

}
d3x′ ,

where some of the cross-terms vanish due to ~β × ~β = 0. It is convenient to rewrite the above
expression in component form,

mk =
m′ k

γ
+

1

2γc
ǫijk

∫ {
γ − 1

β2
x′ iJ ′ ℓβjβℓ − γ

γ + 1
x′ ℓJ ′ jβiβℓ + x0J

′ jβi

}
d3x′ .
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Using eqs. (131) and (146), the integrals above are easily evaluated,

mk =
m′ k

γ
+

1

2γ
ǫijk

{
γ − 1

β2
ǫiℓnm′nβjβℓ − γ

γ + 1
ǫℓjnm′nβiβℓ

}
.

Summing over the product of ǫ-tensors,

mk =
m′ k

γ
+

1

2γ
m′ n

{
γ − 1

β2
(δjℓδkn − δjnδkℓ)βjβℓ − γ

γ + 1
(δiℓδkn − δinδℓk)βiβℓ

}

=
m′ k

γ
+

1

2γ
m′ n(β2δkn − βkβn)

[
γ − 1

β2
− γ

γ + 1

]

=
m′ k

γ
+

γ − 1

2(γ + 1)

[
β2m′ k − (~β· ~m ′)βk

]
,

after using β2 = (γ2 − 1)/γ2. We can also use the latter to combine the first two terms above,

1

γ
+
β2(γ − 1)

2(γ + 1)
=

1

2

(
1 +

1

γ2

)
.

Thus, we end up with

~m =
1

2

(
1 +

1

γ2

)
~m ′ − γ − 1

2(γ + 1)
(~β· ~m ′)~β . (147)

To first order in β, we can approximate γ ≃ 1, and it follows that ~m ≃ ~m ′, which confirms the
result of eq. (136).

Next, we evaluate ~p at fixed x0 starting from eq. (128),

~p =
1

c

∫
~x
(
~β· ~J(~x)

)
d3x =

1

c

∫
~x
(
~β· ~J ′(~x ′)

)
d3x′ ,

after using eqs. (126) and (140). We now employ eq. (138) and obtain

~p =
1

c

∫ {
~x ′ − γ

γ + 1
~β (~β·~x ′) + x0~β

} (
~β· ~J ′(~x ′)

)
d3x′ ,

which we rewrite in component form,

pi =
1

c

∫ {
x′ i − γ

γ + 1
βiβkx′ k + x0β

i

}
βjJ ′ j d3x′ .

Using eqs. (131) and (146), the integrals above are easily evaluated,

pi = βj

{
ǫijℓm′ ℓ − γ

γ + 1
βiβkǫkjℓm′ ℓ

}
= (~β × ~m ′)k ,

after noting that ǫkjℓβjβk = 0. Hence,

~p = ~β × ~m ′ , (148)

which is exact to all orders in β.
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REMARK:

The results of parts (a) and (b) can be combined by linear superposition into the following
result. Suppose a time-independent localized charge density ρ′(~x ′) of zero total charge and a

time-independent, steady localized current density ~J ′(~x ′) exist in a reference frame K ′. In this
reference frame, the system of charges and currents possesses an electric dipole moment ~p ′ and a
magnetic dipole moment ~m ′. The frame K ′ moves with velocity ~v = ~βc in the frame K. Then,
in frame K there is a charge density and current density given by:

cρ(~x) = γ
(
cρ′(~x ′) + ~β· ~J ′(~x ′)

)
, ~J(~x) = ~J ′(~x ′) +

γ − 1

β2

(
~β· ~J ′(~x ′)

)
~β + γ~βcρ′(~x ′) ,

where γ = (1 − β2)−1/2. Moreover, the electric and magnetic dipole moments in frame K are:

~p = ~p ′ − γ

γ + 1
(~β·~p ′) ~β + ~β × ~m ′ , (149)

~m =
1

2

(
1 +

1

γ2

)
~m ′ − γ − 1

2(γ + 1)
(~β· ~m ′) ~β + 1

2
~p ′

× ~β . (150)

The above results are exact to all orders in β. If one sets ~m ′ = 0 [or ~p ′ = 0], then one recovers
the results of part (a) [part (b)] above, respectively.

An equivalent result can be found by defining the unit vector β̂ ≡ ~β/β. Then, using β2 =
(γ2 − 1)/γ2, we end up with15

~p = ~p ′ −
(

1 − 1

γ

)
(β̂·~p ′) β̂ + ~β × ~m ′ , (151)

~m =
1

2

{(
1 +

1

γ2

)
~m ′ −

(
1 − 1

γ

)2

(β̂· ~m ′) β̂ + ~p ′ × ~β

}
. (152)

15Eqs. (151) and (152) were obtained in George P. Fisher, The electric dipole moment of a moving magnetic

dipole, American Journal of Physics 39, 1528–1533 (1971). See also Marijan Ribarič and Luka Šušteršič, Moving

pointlike charges and electric and magnetic dipoles, American Journal of Physics 60, 513–519 (1992).
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APPENDIX: Proof of a determinantal formula

Theorem: Let A be an n× n matrix, whose matrix elements are given by:

Aij = δij − aiaj . (153)

Then,

det A = 1 − |~a|2 , where |~a|2 =

n∑

i=1

a2i . (154)

Proof: The determinant of A is defined as

det A = ǫi1i2···in A1i1A2i2 · · ·Anin ,

where there is an implicit sum over repeated indices. Plugging in eq. (153),

det A = ǫi1i2···iN (δ1i1 − a1ai1)(δ2i2 − a2ai2) · · · (δnin − anain) .

Expanding the product above, and using the Kronecker deltas to perform the sums, we obtain

det A = ǫ123···n − a1ai1ǫi123···n − a2ai2ǫ1i23···n − · · · − anainǫ123···in

= ǫ123···n(1 − a21 − a22 − · · · − a2n) , (155)

after performing the final set of summations and using the fact that ǫi1i2···in vanishes unless all
of its indices are distinct. Note the absence of any terms in eq. (155) that are quartic (or higher
order) in the ai, since all such terms will be symmetric under the interchange of two indices that
are summed against two corresponding indices of the Levi-Civita tensor. For example,

ǫi1i2···iNa1ai1a2ai2 = 0 ,

since ai1ai2 is symmetric under the interchange of i1 and i2 whereas ǫi1i2···iN is antisymmetric
under this interchange of indices.

Since ǫ123···n = 1, eq. (155) yields

det A = 1 −
n∑

i=1

a2i ,

which completes the proof.
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