Physics 214 Solution Set 2 Winter 2023

1. [Jackson, problem 11.10]

(a) For the Lorentz boost and rotation matrices K and S show that

(é-8)° = —&-8S, (1)
(€-K)P= é.K, (2)

where € and € are any real unit 3-vectors.

We are given

0O 0 0 O O 0 0 O 0O 0 0 0
0O 0 0 0 0 0 0 1 0 0-1 0
Si=10 0 0 -1]" 2=10 0 0 ol =10 1 0 ol
0O 0 1 0 0-1 0 0 0O 0 0 O
0O 1 0 0 0O 0 1 0 0O 0 0 1
1 0 0 O 0O 0 0 O 0 0 0 O
Ke=19 0 0 ol Ko=11 0 0 ol Ks=19 0 0 o
0 0 0 O 0 0 0 O 1 0 0 O
To prove eq. (1), we evaluate the matrix €S explicitly,
0 0 0 0
R - 0 0 —E€3 €2
€8 = 0 €3 0 —€1 ’
0 —€9 €1 0
and then compute (€-S)? via matrix multiplication. Indeed,
0 0 0 0
~ o2 |0 —€2 — €2 €169 €165
(€-5)" = 0 €162 —€2 — €2 €963 ’
0 €1€3 €2€3 —€2 — €2
and
0 0 0 0
(e-8) = (@8yes=—(+a+ ) ) T8 2l g,
0 €3 0 —€1
0 —€9 €1 0

after using the fact that € is a real unit 3-vector, which implies that 5 + €3 + €3 = 1.



To prove eq. (2), we evaluate the matrix é- K explicitly,

0 €, € €

N . 6/1 0 0 0

K=y 0 0o o (3)
& 0 0 0

and then compute (€’-K)? via matrix multiplication. Indeed,

€2 + €y’ + € 0 0 0
/2 !l !/
(é’-K)2 _ 0 €1 €169 €1€3
- 0 e ¢ E/2 el e ’
162 2 263
s ! /
0 €1€5 €565 €
and
/ / /
0 € €9 €3
/
R - . € 0 0 0 R
(6"K)’=(&"K)y’e"K = (?+ e +¢) | | =é" K,
€5 0 0 0
€l 0 0 0

after using the fact that €’ is a real unit 3-vector.

ALTERNATIVE SOLUTION:

The following alternative solution to part (a) is noteworthy. First, observe that the first row
and column of Sy, Sy and S3 are all zeros. Hence we can simply focus on the remaining 3 x 3
block. That is, we write the S; in block matrix form,

where 07 is a row vector of three zeros, 0 is a column vector of three zeros, and

+1, if (ijk) is an even permutation of (123),
€ijk = —1, if (ijk) is an odd permutation of (123),
0, otherwise ,

is the three-dimensional Levi-Civita tensor. After excluding the first row and column, jk labels
the three remaining rows and columns of the S;.

Thus, we can compute (€-5)? by pretending that the first row and column do not exist. More
explicitly,’

(é's)?k = (€-5)0(€-S)im(€-S)mr = €i(Si)je €p(Sp)em €4(Sq)mn
= —E€€p€q€ije Eptm Eqmk — €i€p€q€ije €Epme Eqmik

= €i€p€q(0ipOjm — OimOjp)Eqmb = €q€qjk — €m€j€q€qmk (5)

n eq. (5), we employ the Einstein summation convention. In this derivation, we make use of the antisymmetry
properties of the Levi-Civita tensor and employ the identity €;jr€pme = 6ipdjm — dimdjp-
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after noting that €;¢;, = €-€ = 1 since € is an arbitrary real unit vector. We now observe
that €,€;€,€4mr = 0 since €,,¢, is symmetric under the interchange of m and ¢ whereas €y, is
antisymmetric under the same interchange of indices. Thus, eq. (5) yields

(é's)ik = €q€qjr = —€4(Sq)jk = —(€-8)

which establishes eq. (1).
To establish eq. (2), we rewrite €'+ K given by eq. (3) in block matrix form [analogous to the
form of the S; in eq. (4)],

where 0, stands for the matrix elements of the 3 x 3 zero matrix. In particular, j labels the row
and k labels the column. Then,

(& K)? 0 ‘ € 0 ‘ € 0| € e | o 0| €
. ‘]k P =
/ / / T /1 /
€ 0;¢ € ‘ Oy; € | Oix Oj ‘ €€ € | Oix
1 ‘ Oz 0 €
k ~
= = = = (6/'K>jk s

T ! 1 / I Al Al /

after using the fact that € is is real unit vector. Once again, eq. (2) is established.

(b) Use the result of part (a) to show that:
exp(—CB-K) =1-3-K sinh ¢ + (BI()2 [cosh¢ — 1] ,
where [ is the 4 x 4 identity matrix.

We employ the series expansion for the exponential (which defines the matrix exponential),

N =0 yr

exp Cﬁ K = nZ:O o )

In part (a), we established the following result: (3-K)? = 3-K. Hence, it follows that
(B'K)2HZ(B'K)2> (B'K)2n+1:B'K7 fOl"?’L:]_,2,3,....

Thus, we can rewrite the series given in eq. (7) as

exp(~(B-K)=1-8-K ) _ %Hﬁ-KY > % (8)
nodd magn



B-K)° = I is the 4 x 4 identity matrix. Using,

= sinh (, i (;2:)‘ = cosh

S

after using the fact that

¢t
(2n+1)!

hE

i
o

n n=0

and noting that the last summation in eq. (8) starts at n = 2, we end up with
exp(—(B-K) — I —3-K sinh ¢ + (B-K)?[cosh ¢ — 1] , (9)

which is the desired result.

REMARKS:

To understand the significance of eq. (9), let us write it explicitly in matrix form. It is
convenient to use the block matrix form of eq. (6), where j labels the row and k labels the
column,

Then, eq. (9) yields
N cosh ¢ ‘ -3 sinh ¢
exp(~¢B-K) = | — -
—B3;sinh ¢ ‘ djr + BB (cosh ¢ — 1)

In class, we identified ¢ = tanh™" 3 as the rapidity, which satisfies

1
= ———— =cosh(, = sinh (.
g i ¢ el ¢
Hence, after writing 8 = 38 = (61, B2, B3), it follows that
A v ‘ =B
exp(—CB-K) = 5.3 ) (11)
which we recognize as the boost matrix defined in eq. (11.98) of Jackson.
AN ALTERNATIVE METHOD FOR COMPUTING exp(—( B-K):
Using eq. (3),
0 —CBi/B —CB/B  —(B3/B
— A —C5/B 0 0 0
M = — 'K — 12
BE= s 0 0 0o | 12
—(B3/B 0 0 0



In order to compute f(M) = exp M, we shall employ the following formula of matrix algebra.
Denote the distinct eigenvalues of the n x n matrix M by \; and define the following polynomial,?

plz) =(z = )(z—Ag) -+ (x — \p) (13)

Then, M is diagonalizable if and only if p(M) = 0,, where 0,, is the n X n zero matrix. In this
case, any function of M is given by 3

- T M=\,
o0 =" fo0 [ TI 522 (14)
Y
where I, is the n x n identify matrix and m is the number of distinct eigenvalues.*
We first compute the eigenvalues of M, which are roots of the characteristic polynomial,
—¢A//B 00 —(B/B =X 0
det(M — M) = X' + ) det —Cﬁ;/ﬁ -\ 0] - ¢ det —gﬁl/ﬁ 0 0
oo \as 0 A) P \ems 0 -
P S Y/ I S
5 det | =CB/B 0 —=X| =N\ =¢?), (15)
—(B3/B 0 0
after using 3% = 8% + 2 + 2. Thus, the three distinct eigenvalues of M are \; = 0, ¢, —C.
We can check that M is diagonalizable by evaluating:
p(M) = M(M — (I)(M + (14)
0 —(B/B —=CB/B  —CBs/p —C —(B/B —CB/B  —CBs/p
—(Bi/B 0 0 0 —(Bi/ B —C 0 0
—(B2/ 0 0 0 —(B2/ 8 0 —C 0
—(Bs/B 0 0 0 —( B3/ 0 0 —C
¢ —CB1/B —CBe/B (BB
| -ems ¢ 00
—(B2/ 0 ¢ 0
—(B3/B 0 0 ¢
1 B1/8 Ba/ B B/ B 1 —B/B  —B2/B  Bs/B
_ ¢ BB BYBE BiBa/B? BiBs/B | | —Bi/B 1 0 01 _p
Ba)B  B1B2/B*  B3/B* [aBs/B | | —02/B 0 1 0 v
Bs/B  BiPs/B*  BaBs/B*  B3/6° —B3/8 0 0 1
(16)

2Note that m < n since it is possible that the characteristic polynomial possesses one or more multiple roots.

3For example, see eqs. (7.36) and (7.3.11) of Carl D. Meyer, Matriz Analysis and Applied Linear Algebra (STAM,
Philadelphia, PA, 2000) or Chapter V, Section 2.2 of F.R. Gantmacher, Theory of Matrices—Volume I (Chelsea
Publishing Company, New York, NY, 1959).

If the n x n matrix M is not diagonalizable then p(M) # 0,,, in which case the formula for f(M) is more
complicated than the one given in eq. (14).



We now apply eq. (14) to f(M) = exp M. It then follows that

exp M = —é(M — (L) (M + 1) + e<2i<2M(M +CIy) + 6‘42%2M(M — (1)
It (sinchg) M4 (coshgg— 1) 2 (17)

Inserting M = —( 3- K, we recover the result of eq. 9).

2. [Jackson, problem 11.13] An infinitely long straight wire of negligible cross-sectional area is
at rest and has a uniform linear charge density gy in the inertial frame K’. The frame K’ (and
the wire) move with velocity ¥ parallel to the direction of the wire with respect to the laboratory
frame K.

(a) Write down the electric and magnetic fields in cylindrical coordinates in the rest frame of
the wire. Using the Lorentz transformation properties of the fields, find the components of the
electric and magnetic fields in the laboratory.

In the rest frame of the wire (i.e. frame K’), choose the z-axis to point along the wire. Then, to
compute the electric field, we draw a cylinder of length L and radius 7/, whose symmetry axis
coincides with the z-axis. Applying Gauss’ law in gaussian units,

jqfﬁ’-ﬁda:zmcg, (18)
S

where @Q is the total charge enclosed inside the cylinder. In cylindrical coordinates (', ¢', 2’),® the
symmetry of the problem implies that E ‘o', ¢, 2") = E'(r'")p, where E'(r") depends only on the
radial distance from the symmetry axis. Choosing the surface S to be the surface of the cylinder,
we have i = #, and so eq. (18) reduces to

2rp LE'(r") = 47Q) .
Defining the linear charge density (i.e. charge per unit length) by ¢ = Q/L, we conclude that®

_ 2q0
==,
T/

E'(r) (19)

Since there are no moving charges in the rest frame of the wire, it follows that B'=0.
The transformation laws for the electric and magnetic field between reference frames K and

5We denote the radial coordinate of cylindrical coordinates in frame K’ to be 7’ rather than the more traditional
P, since we reserve the letter p for charge density.

6The direction of the unit vectors #, q?) and £ are the same in frames K and K’, so no extra primed-superscript
is required on these quantities.



K' are given by’

For this problem, 3 = 3 2. Using the results of part (a), and noting that r = " (since the radial
direction is perpendicular to the direction of the velocity of frame K’ with respect to K), it follows
that

= 2 — 2 -~
=%, _B:’W%¢’ (20)
r r
where we have used 2-7 =0 and £ X # = d3

(b) What are the charge and current densities associated with the wire in its rest frame? In
the laboratory?

In reference frame K there are no moving charges, so that J' = 0. The corresponding charge
density is

o) = sl (21)

To check this, let us integrate over a cylinder of length L and arbitrary nonzero radius, whose
symmetry axis coincides with the z-axis. Then,

/p'(r/) dV = /p/(r') r'dr'dpdZ = qq / dr'é(r')dz' = gL = Q.

-

Since J* = (cp; J) is a four-vector, the relevant transformation law between frames K and K’
are:

cp=(cp +3-J), (22)
— — — 1 - =, = —
J:J/—i-%(ﬁnfl)ﬁ—l-vﬁcp'. (23)
Plugging in J" = 0 and the result of eq. (21), and noting that B = B%andr =r, it follows that
) = YBeqo B . .
o) =105y, T =W 5 50 = plrez = p(r)5, (21)

after using v = fec.

"Eq. (11.149) of Jackson provides the equations to transform the fields from reference frame K to reference
frame K'. To transform the fields from K’ to K, simply change the sign of ﬁ

8We can interpret ¢ = vqo as the linear charge density as observed in reference frame K. This is not unexpected
due to the phenomenon of length contraction.



(¢) From the laboratory charge and current densities, calculate directly the electric and mag-
netic fields in the laboratory. Compare with the results of part (a).

This is an electrostatics and magnetostatics problem, so we can use Gauss’ law to compute E
and Ampere’s law to compute B. The computation of E is identical to the one given in part (a)
with g replaced by yqo. Hence, it immediately follows from eq. (19) that

— 2
BE(ry="27
T

)

in agreement with eq. (20). Ampere’s law in gaussian units is

I
]{B-dezi,
C C

where I is the current enclosed in the loop C. With J given by eq. (24),

I:/f-ﬁda:/p(r)vrdrdqb:vqov,
A

after noting that n = 2 points along the direction of the current flow and da = rdrde is the
infinitesimal area element perpendicular to the current flow. Using the symmetry of the problem,
B = B(r)¢. Thus, evaluating Ampere’s law with a contour C' given by a circle centered at r = 0
that lies in a plane perpendicular to the current flow, d€ = rd¢¢ and
Al 4
2mrB(r) = T Tt :

Cc C

which yields

>3 2vBqov
B(r) = 200 g,
after using v = fc¢, in agreement with eq. (20).

3. [Jackson, problem 11.15] In a certain reference frame, a static uniform electric field Ej is
parallel to the z-axis, and a static uniform magnetic field By = 2Fj lies in the x—y plane, making
an angle # with respect to the x-axis. Determine the relative velocity of a reference frame in
which the electric and magnetic fields are parallel. What are the fields in this frame for § < 1
and 6 — %w?

In frame K, we have
E=Ea, B=B,z+DB,7, (25)

with
E-B = |E||B|cosf = EyBycosf = 2E2 cos 0, (26)

after writing | E| = Ey and |B| = By = 2E,. It follows that

B, =2Eqcosb, B, =2Eysinf. (27)



The electric and magnetic fields are parallel in a reference frame K’ which is moving at a
velocity U = ¢ with respect to reference frame K. That is, the fields in K’ satisfy,

E'xB' =0. (28)

The electric and magnetic fields in frame K’ are related to the corresponding fields in frame K
by eq. (11.149) of Jackson,

2

—»/_ — — —»_ ’)/ —»—»-—»
B =B+ x B) - A-B), (29)
—»/_ —»_—» —»_ ’}/2 —»—».—>
B'=(B-fxE)- A4 B). (30)

These relations can be rewritten in the following form,

= <

- By, (31)
Eizy(ﬁpuﬁxi), Ei:y(ﬁl—ﬁxi). (32)

In eqs. (31) and (32), fields with a || subscript are parallel to 3 and fields with a L subscript are
perpendicular to 8. For example,

ﬁxﬁ||:0 and G-E, =0,

which implies that

and B, —F— (ﬁ'ﬁfj)ﬁ:BX(ﬁszﬁ)

The form of egs. (31) and (32) suggests that the relative velocity ¥ should point in the z-
direction. That is,

B=pz,
in which case Ell = FE.Z and BII = B.,Z. Since E, = B, = 0, it follows from eq. (31) that
E! = B! =0. Using eq. (32), the transverse fields are given by

E. =~y(E, — BB,) = vEy(1 — 283sin0), E, =~(E, + fB,) = 2fvE,cos¥ (33)
B! = (B, + BE,) = 2v7Ecos b, B, =~(E, + B,) = 7Ey(2sin0 — (), (34)

after using eqgs. (25)(27). Moreover, eq. (28) implies that E,B, — E,B] = (E'xB'). =0.
Inserting the results for the primed fields in this last equation, it then follows that

V*E3(1 —2Bsinf)(2sin @ — 3) — 43v*E2 cos* 0 = 0.
Multiplying out the factors above and writing cos?# = 1 —sin? 6, the above equation simplifies to
23%sin — 58 +2sinf = 0. (35)
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This is a quadratic equation in $ which is easily solved. The larger of the two roots is greater than
1, which we reject since 0 < 5 <1 (i.e., 0 < v < ¢). The smaller of the two roots is non-negative
and less than 1. Thus, we conclude that

v 5H—1/25—16sin’0
= - = . 36
b c 4 sin 0 (36)

The two limiting cases are easily analyzed. In the case of # < 1, we can work to first order in
6. From eq. (36) we find that 3 ~ 20. Since § < 1 it follows that 8 < 1, in which case

v=(1- B2)_1/2 ~1+0(p%).

Since we are working to first order in #, we also must work to first order in . In particular we
can neglect terms such as $6. Hence, in this limiting case, egs. (33) and (34) yield

E'=1B'=Ey(#+289), forf~20<1, (37)

where we have neglected terms that are second order (or higher) in 5. Finally, in the limit of
0 — im, eq. (36) yields # = 1. Then v = 2/v/3, and egs. (33) and (34) yield

E'=0, B'=V3Eyg, forf=1r. (38)

REMARK 1:

Recall that in class, we showed that the quantity F Wﬁuv = %eumgF wpeB — _AE.B is a
Lorentz invariant. This means that if E and B are perpendicular in one frame, then they must
be perpendicular in all frames. Thus, if § = %w in frame K and 6 = 0 in frame K’, then it must
be true that either the electric field or the magnetic field (or both) vanish in frame K’, since the
only vector that is both perpendicular and parallel to a given fixed nonzero vector is the zero
vector. This is indeed the case here, as can be seen in eq. (38).

REMARK 2:
It is easy to show that eq. (36) implies that 0 < g < % If we multiply the numerator and
denominator of eq. (36) by 5+ 1/25 — 16sin? §, we obtain,
4sin 6

54++/25 —16sin26

Since the polar angle lies in the range 0 < 6 < 7 or equivalently 0 < sinf < 1, it follows
immediately that 5 > 0 (where § = 0 corresponds to sin = 0 as expected). Finally, it is easy to
verify that

b=

4sin6

<
5+ 1/25—16sin* 0

Since the denominator on the left hand side above is positive, we can rewrite eq. (39) as
4sinf < 1 (5 + /25 — 16sin? 9) . (40)

10
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This inequality is manifestly true for sind = 0. For siné > 0, eq. (40) can be rearranged into the

following form
8sinf —5 < /25— 16sin’ 6. (41)

Squaring both sides and simplifying the resulting expression then yields sinf (sinf — 1) < 0.
Dividing both sides of the equation by sin @ (which is assumed positive) yields 0 < sinf < 1,
which is valid for all polar angles §. Hence, eq. (39) is established. The inequality becomes an
equality if sinf = 1, in which case § = %

REMARK 3: Non-uniqueness of the solution

In our analysis above, we found one solution to the problem. However, it is easy to see that
there are an infinite number of solutions. That is, there are an infinite number of Lorentz boost

matrices such that

F'™ = M@)o M(B)" 5 F*, (42)
where F*% is the electromagnetic field strength tensor made up of the E and B fields given in
eqs. (25) and (27), F'* is the electromagnetic field strength tensor made up of the E’ and B’
fields such that E' x B’ = 0, and A(ﬁ) is the Lorentz boost matrix in the direction of 5 given
in eq. (11). We have already found one such boost matrix, namely A(52), where § is given by
eq. (36). This boost matrix produces the E’ and B’ fields given in eqs. (33) and (34). Since E'
and B’ are parallel in the primed reference frame, we can write

E' =FE'n, B' = B'n, (43)

where # is the common direction of E’ and B’. Using eq. (33), one obtains an explicit form for
7 that is given by,

(1 —-2Bsinf)& +2Bcosfy  (sinf — 28)E + Bcos 6 B

n = = , (44)
\/1—4ﬂsin9+452 Eosin9\/1—4ﬂsin9—|—4ﬁ2
where [ is given by eq. (36). We used eqgs. (25)—(27) to obtain the final expression above.
If one applies the following Lorentz transformation to reference frame K,
A = AB'R)A(BE) (45)

then in the resulting reference frame K” the E’ and B’ fields are also parallel, for any choice of '
This result follows from eq. (31), which states that the components of the electric and magnetic
field that are parallel to the boost direction are unaffected by the Lorentz transformation. Having
found the reference frame K’ after applying A(52) where E’ and B’ are parallel and point in the
n direction, one can perform an arbitrary boost in the direction parallel to 7 without modifying
E' and B’ further.

One can evaluate the right hand side of eq. (45) explicitly. Here, I will make use of Pawel
Klimas, Lecture Notes on Classical Electrodynamics, which has been posted to the Physics 214
webpage. Using egs. (1.73) and (1.78) of Klimas’ notes,

A(B'R)A(B2) = ONB"), (46)
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where O is a Lorentz transformation corresponding to a pure rotation® and

2 1 B'h VBB L LN as
= ]_ M 47
A 1+5ﬁ/ﬁ-2{7 - +7+1nz PE| (47)
where v = (1 — 82)7Y/2. In light of eq. (44), it follows that -2 = 0, and eq. (47) simplifies to'°
B" =31~ 5" n+pz. (48)

Note that the parallel electric and magnetic field remain parallel if one transforms the reference
frame by a pure rotation. Thus, we can neglect the pure rotation O in eq. (45) to conclude that
starting from reference frame K, the application of the boost A(ﬁ ") to produce reference frame
K" vields E"” and B” fields that are parallel.

To summarize, the complete answer to the problem posed by Jackson (although probably not
what Jackson meant to ask) is that any boost of the form A(ﬁ’(l — B2+ 52), where 8 and
7 are fixed by eqs. (36) and (44), respectively, will yield a reference frame K” such that the E”
and B" fields are parallel, for any choice of the parameter ', where 0 < g’ < 1.

ALTERNATIVE SOLUTION:

Plugging the results for the electric and magnetic fields in reference frame K’ given by eqs. (29)
and (30) into eq. (28), one can work out the following expressions. First,

—

(E+BxB)x(B-AxE)=ExB-j[E*+B*-3-(ExB)|+E(3-E)+B(G-B), (49)

where E = |E| and B = |B|. Second,

We can simplify the above expression by using v? = (1 — 3%)7!, which yields 82 = (% — 1)/92.
Hence,

2 -1 1
LCAR N St S (53)
7+ gl gl

9The rotation O is called the Wigner rotation. As explained below eq. (48), the parallel electric and magnetic
fields remain parallel under a pure rotation, and thus we will not require an explicit expression for the Wigner
rotation in this problem.

107f we define 3" = |3"], then 8”2 = 3'2(1 — 82) + 2. One can then check that 0 < 82, 3’2 < 1 implies that
0 < "2 < 1, as required by special relativity.
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We then end up with,

where
h=E*+ B — k[E*B* - (E-B)?] - L{ [k E? + ky(E-B)]” + [k (E-B) + k232]2} . (55)

The only way to satisfy E' x B' = 0 is if the right hand side of eq. (54) is proportional to
E x B.!
One way of ensuring that the right hand side of eq. (54) is proportional to E X B is to take
B3 to be parallel to E X B. That is, there exists a nonzero constant k£ such that
B=kE xB. (56)

Note that eq. (56) implies that B-E = 3-B = 0. Hence, eq. (54) simplifies to,

E' x B'=+’3 T—Ez—Bz : (57)
It then follows that
i o/ 1+ 62 2 2
E'xB' =0 — ’ = F*+ B*. (58)
Using eqs. (25) and (27), E? + B? = 5FEZ and
= ~ o 2F2ksinf -
ﬁ:k:ExB:OTsmﬂ. (59)
Thus, one can identify,
s
k=—r—.
2FEZ2sin 6 (60)
Plugging this result into eq. (58) yields,
2sin (1 + B%) = 58, (61)

which reproduces the result previously obtained in eq. (35).

As a check of our calculation, let us verify explicitly that E’ is parallel to B’. Inserting
eq. (56) into eqs. (29) and (30) yields,

E'=~E (1 - kB*) ++kB(E-B), (62)
B'=+B (1 - kE?) + vkE(E-B). (63)

HRecall that if {#;} is a set of linearly independent vectors, then the only solution to > cii =01is ¢; = 0 for
all 4.
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In light of egs. (25)—(27) and eq. (60),

E' =~E, [(1—28sin6)& + 28 cosd ] , (64)

B’ = yEy[2cos0 & + (25in0 — B)§] . (65)
We can now check that - .

E' x B' = [2sin0(1 + %) - 56]2 =0, (66)

after employing eq. (61), which completes the check of the calculation.

The two limiting cases are now easily analyzed. In the case of § < 1, we can work to first
order in #. As noted below eq. (36), B ~ 260 and v = (1 — $%)71/2 ~ 1 4+ O(3?). Since we are
working to first order in 0, we also must work to first order in 3. In particular we can neglect
terms such as 6. Hence, in this limiting case, egs. (64) and (65) yield

E'=1B' = Ey(2+289), forf~20<1, (67)

where we have neglected terms that are second order (or higher) in 5. Finally, in the limit of
0 — %w, eq. (36) yields g = % Then v = 2/4/3, and eqgs. (64) and (65) yield

E'=0, B'=V3Ey, forf=1r. (68)

Thus, we have reproduced the results of egs. (37) and (38).

REMARK 4:

Another strategy to find all possible boosts that result in parallel electric and magnetic fields
is to start with eqs. (29) and (30) and impose the condition E’ x B’ = 0 to determine the most
general form for the boost We again denote the boost parameter by ﬁ

Since E B and E x B are three linearly independent vectors, 6 can be written in the

following form, . . . I
B=kE+kB+kExB, (69)

where the constants ki, ke and k are to be determined. It then follows that,

B-E = E%*k, + (E-B)k,, B-B = (E-B)k, + Bk,
BxE=—kExB—-k[(E-BE—-FB|], pxB=kExB+k[(E-B)B-BE]|.
B-(E x B) =k|E x B? = k[E*B*— (E-B)?],
and [ = |5|, where
B =k E* + 2kiko(E-B) + k3B + k*[E°B* — (E-B)?] . (70)

This last equation is needed to obtain an expression for v = (1 — 5?)7'/2. Plugging the above
results into eq. (54) yields,

E/X§/201E+02§+C3EX§’ (71)
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in reference frame K", where

= —72]€1h+7[/€1E2 + kz(E' )] + %[E2B2 - (EB)ﬂ ) (72)

¢ = =l o [l (B-B) + ko B S (BB — (BB (73)
3

cs =v°(1 — kh) — 71 1 [K1E? + 2k ko(E-B) + k3 B?) (74)

and h is given by eq. (55), which we rewrite below for the reader’s convenience,

h=E’+ B2 k[E*B* — (E-B)’] - #{ [l E® + ky(E-B)]* + [k(E-B) + k232]2} . (75)

To find solutions {ki, ko, k} to the equation E'x B' =0, we set ¢; = ¢ = c3 = 0. This
yields three nonlinear equations for the three unknowns, k;, ky and k. The one solution obtained
previously with ﬁ = (o2 corresponds to k; = ks = 0 and kh = 1, where k is given by eq. (60).
Here, we write [y to distinguish this special case from the general case under consideration. In
this special case, ¢; = co = 0 automatically and c3 = 0 yields kh = 1 which implies that

k(E*+ B*) — k*|E*B? — (E-B)*] = 1. (76)
Using egs. (25)—(27), B2 + B2 = 5E2 and E?B? — (E-B)? = 4E4sin? 0. Hence,
AEgk*sin®0 — 5E5k +1=0. (77)
Using eq. (60) to eliminate k (replacing § with (G, as noted above), eq. (56) is equivalent to

50
2 _— =
Ho 251n9+1 0, (78)

which yields eq. (61) for the special case of B = By%, as expected.
More generally, one can verify that eq. (48) provides a family of solutions to eqs. (72)—(74)
with ¢; = ¢y = ¢3 = 0. In light of eqgs. (44) and (48), we can identify,

p'(sin @ — 25,)

ki = , 79
! YoFosin0y/1 — 4B, sin 6 + 432 (79)
! 0

by = ———— et , (50)

YoFosin0y/1 — 4B, sin 6 + 432

Bo

k=20 1
2E3sinf’ (81)

where f3 is given by eq. (78), v, = (1—82)~'/? and ' is an arbitrary number such that 0 < 8’ < 1.
I have checked using Mathematica that after plugging in egs. (79)—(81) into egs. (72)—(75) along
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with B2 = E2, B> = 4F2, and E-B = 2E2 cos, the end result is,

27 CE [2(83 + 1) sinf — 5] N 1—18psinf — C?cos? 0 (82)
= (1+7)sind 1— 32— C2(1— 4Bysind + 482) |
YC Eqgcos 0[2(83 + 1) sinf — 50 1—C?*(1 —2fysinb)
Co = ; v+ 3 : 5| s (83)
(14+7)siné 1— 55— C?(1 —4Bysin @ + 453
B 72 [2(5& +1)sinf — 550] [1 + v —C%(1 — 2By sin 9)} (34)
= 2(1+7)sinf ’
where ,
C= i (85)

Yor/1 — 4By sin @ + 452
Indeed, if 3y satisfies eq. (78) then we find that ¢; = ¢ = ¢3 = 0. Thus, I have verified that a
boost to the frame with boost parameter given by eq. (48) yields E’ x B’ = 0. I believe that
{k1, ko, k} given by eqs. (79)—(81) provides all possible solutions, but I do not have a proof of this
statement.

4. [Jackson, problem 11.18] The electric and magnetic fields of a particle of charge ¢ moving
in a straight line with speed v = f¢, given by eq. (11.52) of Jackson, become more and more
concentrated as § — 1, as indicated in Fig. 11.9 on p. 561 of Jackson. Choose axes so that
the charge moves along the z axis in the positive direction, passing the origin at t = 0. Let the
spatial coordinates of the observation point be (z,y, z) and define the transverse vector 7, , with
components x and y. Consider the fields and the source in the limit of § = 1.

(a) Show that the fields can be written as

— r —> 3 X r
E:2q/r—2l d(ct — 2), B:2qv ;l dct — 2), (86)
’f’J_ TJ_

where ¥ is a unit vector in the direction of the particle’s velocity.

We begin with eq. (11.154) on p. 560 of Jackson,

qR

E=
R3~42(1 — B2sin?q)3/2

(87)

where 1 is the angle between the vectors ¥ and R. 1 have modified Jackson’s notation by
employing the symbol R for the vector that points from the charge ¢ to the observation point 7 =
(x,7, 2) in reference frame K.'? Eq. (87) was also derived in class along with the corresponding
result for the magnetic field,

q(¥ x R)

B= .
cR3y2(1 — 32 sin?1))3/2

(88)

12 Jackson denotes the vector that points from the charge ¢ to the observation point (z,y,2) by . However,
I prefer to employ 7 to represent the vector that points from the origin of reference frame K to the observation
point, as shown in Fig. 1.
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(2,9, 2)
g R
. (0
vt
> » 2

Figure 1: A charge ¢ moving at constant velocity ¥ in the z-direction as seen from reference frame
K. The angle 1 is defined so that v+ R = cos.

The reference frame K is exhibited in Fig. 1. It is evident from this figure that
R=7—17t. (89)

The velocity vector is taken to lie along the z-direction. That is, ¥ = vZ2.
It is convenient to introduce the notation where

— —

= ax + y:&, T ZZ, (90)

so that 7, -¥ = 0 and ¥ X ¥ = 0. Likewise, we can resolve the vector R into components parallel
and perpendicular to the velocity vector,

EIE||+ﬁl,

where

—

R||ER||2:(Z—Ut)2, RJ_:FJ_. (91)
after making use of eq. (89). In particular, note that |R 1| = R, = Rsin. It follows that
R*(1— B%sin®)*? = (R* — B°R?sin® )" = (R} + R} — B°R7)*?
R+ RE(1— P2 = (RS + 2 /42 (92)

Note that in obtaining eq. (92) we used R* = R} + R} and v = (1 — #%)7"/2. Moreover, since

1/2

R, =7, [cf. eq. (91)], we may replace R, with 7, = |7, | = (22 4 y%)"/2 in the above formulae.

Egs. (87), (91) and (92) then yield

g7+ (2 — vt)Z]

E= 93
(V2R + 1) (93)

Likewise, eqs.(88), (91) and (92) yield
B’ _ VQ(’U X TJ_) (94)

PR+
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Consider the limit of f — 1. In this limit, v — oo, and we see that

lim Y _ 0, ifR”;éO,
Y0 (’72Rﬁ + 7“3_)3/2 oo, if R” =0.

This implies that

. g
] _
Jim, PR+ ) ko(Ry), (95)

for some constant k. Note that in light of eq. (91),

lim R” IZ—Ct,

y—00
since v — oo in the limit of v — ¢. To determine &, we integrate eq. (95) from —oo to oo, since Rj|
can be any real number (either positive, negative or zero) depending on the value of the time ¢.
Thus, employing the substitution u = yR,

I — /Oo Y dR” . /Oo du . u > . 2
B S Y O D (R D W
Hence, we conclude that

. 0% 2
lim = —d(z—ct).
e GERT+ )R

Inserting this result back into eqs. (93) and (94) yields

i r _ O X T
E=2"20(z—ct), B=20"""25(:z—ct). (96)
L L

In obtaining E above, we noted that in the limit of v — ¢, the z-component of the electric field
is proportional to (z — ¢t)d(z — ¢t) = 0 due to a property of the delta function. In obtaining B
above, we noted that lim,_.¥/c = ©. Finally, since the delta function is an even function of its
argument, we can write d(z — ct) = d(ct — z), and eq. (86) is verified.

(b) Show by substitution into the Maxwell equations that these fields are consistent with the
4-vector source density
J% = qev* 0@ (#)d(ct — 2)

A~

where the 4-vector v* = (1; D).

=

The four-vector current is given by J* = (c¢p; J). Hence, using the Maxwell equations in gaussian
units,

V.-E =4mp = mJ .
c

Hence, using eq. (96) and noting that £, = 0, it follows that

v e =z ¢ (g = 0OE\ qc = T
J —EV E—E<VJ_'E+ az)—%é(Z_Ct)Vl'(E)v (97)
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where

V.=&0/0x+§0/0y. (98)

For ¥, =x& +y 9y # 0, an elementary computation yields

- T 5, T 0 y y* — 2 x? — 92
O, (T2 (_x \, O _ —0. (99
) <7’i) Ox <x2+y2)+0y <w2+y2) G R (@ T ) (#9)

To determine the behavior at ¥, = 0, we consider the two-dimensional analogue of the divergence

theorem,
. ’FJ_ 'FJ_ 21
/dxdyVL- — :j{rld¢—2-7ﬂ:/ dp = 2w, (100)
A Tl c Tl 0

where A is a circular disk and C' is the circular boundary of the disk. Note that #, = 7, /r, is
the outward normal to the circular boundary.
Egs. (99) and (100) imply that

V.- (T—j) = 26@ (7)), (101)

L

where 62 (7 ) is a two-dimensional delta function. Inserting this result into eq. (97), we end up
with

JO = qedP(7)6(2 — ct). (102)
Next, we employ the Maxwell equation,
6x1§—%%—?:%ﬂf, (103)
to evaluate J. F irst, we compute
O X T =2X (2% +yy) =29 — y&, (104)

where we have used the fact that ¥ points in the z direction. It then follows that

T U zZ

b X 7 0 0 0

- UV XT| v v v
e d(z — ct) P d(z —ct) 0

(
§x |5y | TR O (e N 0w Ny
r? 2242 Ox \ 22 + y> Oy \ 22 + y?

T i
FJ_ A —
= —Eé’(z —ct) + 212 6P (7)6(2 — ct). (106)
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The prime refers to differentiation with respect to z. Finally, we compute

0 FJ_ o 0 FJ_ - C'FJ- /
g (E 6(z — ct)) = —c5- (E o(z — ct)) =y §(z—ct). (107)

Inserting eq. (96) into eq. (103) and using egs. (106) and (107), we obtain

T g « {"’ XL (e — ct)] _ 40 (“ 5(z — ct))

2T ri o Ot g

= % {—%5'(2 —ct) + 272 0P(7F1)6(2 — ct) + % §(z — ct)}
= qct 8P (F)0(2 — ct), (108)
after using the fact that ©® = 2. Combining eqgs. (102) and (108), we can write
J = qev*d P (71)6(z — ct)

where the four-vector v® = (1; D).

(c) Show that the fields of part (a) are derivable from either of the following 4-vector potentials:
AY = A* = —2¢8(ct — z) In(\ry), A =0, (109)

or

A'=A"=0, A = —2¢0(ct — 2)V  In(\ry), (110)
where \ is an irrelevant parameter setting the scale of the logarithm. Show that the two potentials
differ by a gauge transformation and find the corresponding gauge function y.

The four-vector potential is A* = (¥ E) Given the four-vector potential, the electromagnetic
fields are determined by

Fo_wa_ 104 B-VxA.
c Ot

Inserting the scalar and vector potentials given in eq. (109),

E =2¢V [5(015 —2) 1n(m)] + 2—qu 1n(m)%5(ct —2)

N N N - W PP S . O 10N
= 2¢0(z — ct) (w&c +yay) [QIn(x +y°)+1InA| +2¢Z2In(Ar)) (82 + Cat) d(ct — 2)

—

= 2qr—;6(z —ct),
L
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after using 7, = z& + yg and r? = 2? 4+ y*. In particular, note that

o 10
(&‘l‘cat)f(Ct—Z):O,

for any function of ¢t — z. Using eq. (109) to compute the magnetic field,

T U Z
Lo - 0 0 0
B =V X A =det % 8_ a—
0 0 —2qIn(Arp)o(ct — 2)

_2q5(ct — Z) {@% ln()\rl) ag ln()\rL)}

B 0
:—2q5(ct—z){ a—y[ In(z* 4+ y*) + In \] ~ 95 [%1n(m2+y2)+ln>\]}
= 2y — g)b(ct — ) = 22T (et 2)
= Tiy xg)o(ct — z) = q = ct — z),

after employing eq. (104).
Repeating these calculations using eq. (110),

L 104, 0 0
E = T = 2¢6(ct — 2) ( gy —I—’ya ) [1In(z® + y*) + In A| —2q—l5(ct—z)
d
after using the relation between the delta function and the step function, §(z) = d:)s@( x). In the
computation of the magnetic field, we require the following result:
= 0 0\ 9 o T+ yyY
Viln(Ary) = (a:a—x +y8y) [iln(x +y )—l—ln)\] = —y
Hence, it follows that
T U Z
N, 0 0 0
B =V X A= —2qdet or 3_y 9z
Y
@(Ct—Z)W @(Ct—Z)xz_l_yz 0
yT — xy 0 Y 0 x
= ———0(ct - O(ct — - ——
22 1 y? ( 2)+26(c Z){ﬁx <x2+y2) oy (x2+y2)}
= 2qv X;l d(ct — 2),
L
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after employing eq. (104) and noting that

g Y B ﬁ x o 2ay N 2vy 0
Ox \ 2% 4 32 oy \22+y*) (2 +y?)?  (a2+y?)?
Finally, we demonstrate that eqs. (109) and (110) differ by a gauge transformation. Under a
gauge transformation (using gaussian units),

A5 A'=A+Vy, A0—>A’°:AO—188—>;.
c

Denoting A* by eq. (109) and A’* by eq. (110), it follows that

0

8—1( = —2qco(ct — z) In(Ary ),

V.ix =—2¢0(ct — 2)V In(Ary),
0
8_;( = 2q0(ct — z)In(Ar) .

The solution to these equations can be determined by inspection,
X(Z,t) = —2¢O(ct — z) In(Ary ),

up to an overall additive constant.

5. [Jackson, problem 11.27]

(a) A charge density p’ of zero total charge, but with a dipole moment p”’, exists in reference
frame K’. There is no current density in K’. The frame K’ moves with velocity ¥ = Be in the
frame K. Find the charge and current densities p and J in the frame K and show that there is a
magnetic dipole moment 1m = %(ﬁ’ X E), correct to first order in 5. What is the electric dipole
moment P in K to the same order in 57

We shall assume that in frame K’, we have J' = 0 and the charge density, p/(Z') is time-
independent. Furthermore, we assume that the total charge in frame K’ is zero, i.e.

/p’(:ff’) &' =0, (111)

whereas the electric dipole moment in frame K’, denoted by p’, is assumed to be nonzero. By
definition, the electric dipole moment is given by

P = / ' p (&) P’ (112)

Frame K’ is assumed to move with velocity ¥ = ﬁc with respect to frame K. We shall employ
egs. (22) and (23), which we repeat here:

cp="(cp +B-J"), (113)
JF=Ja2 = Y373 +8es (114)
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Setting J" =0, it follows that
p(&) =0 (Z'), J(&) = 1Bep (&) = Bep(E) . (115)
Hence, the electric dipole moment in frame K is given by
p= /:r:p(:rz) d’z, (116)
and the magnetic dipole moment is defined (in gaussian units) in frame K as
/fxf@w%:%/ixﬁM@d%:5{/£M@J%}xﬁ

after employing eq. (115) in the second step above. In light of eq. (116), it follows that

[y

m=1pxp. (117)

In order to relate p to p”, we need to compare p(&) and p'(Z'). Eq. (11.19) of Jackson gives
the four-vector z/# in terms of x#. The inverse relation is obtained by changing the sign of 3,
which yields

= = = —1 = _, — -
vo = (v + B-3), F='+ Lo (378 B (118)
Working to first order in 3, we can set v = (1 — 2)~'/2 ~ 1, and
930:3:’0—1—5-5:", a‘c’:i:"+ﬁzg. (119)

In the same approximation, d®z’ ~ d®z and p(Z) ~ p'(Z'). Hence, using eq. (111),

p= /:‘c’p(:ﬁ) d*z ~ /(:E'—i— Bzl (&) d*x' = /:‘c"p’(:i") & =p'. (120)
to first order in 5. Using egs. (117) and (120), we conclude that to first order in 3,
m=1p"xp.

(b) Instead of the charge density, but no current density, in K’, consider no charge density,
but a current density J' that has a magnetic dipole moment mm’. Find the charge and current
densities in K and show that to first order in 3 there is an electric dipole moment p = 5 x m'
in addition to the magnetic dipole moment.

Suppose that p/(Z") = 0 in frame K’. Then, using the continuity equation

= 71/ ap, _
VIS =0, (121)

and it follows that J” is a steady current; that is,

T

V. J(&)=0. (122)
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The magnetic dipole moment in frame K’ is nonzero and is denoted by m’. By definition, the
magnetic dipole moment is given by

1 -
m = 2—/55’ x J' (&) d*z’ . (123)
c
Then, using egs. (113) and (114),

p(@ =1 3-7(@"), (124)

(@) 8. (125)

l

B-J(&) =~8-J'(&"). (126)

— H e
p(&) ="+ J(T). (127)
Using eq. (127), the electric dipole moment in frame K is given by
1 - -
p= /a‘:’p(a‘:’) d*r = - /f (B-J(@)) d’x. (128)

Working to first order in 3, we can set v = (1 — 3%)71/2 ~ 1, in which case d®z’ ~ d*z and
B-J(&) = 3-J'(£'). Hence,
1 —_ =
P~ —/i’(ﬁ-J’(i:”)) d*x .

c
We now apply using eq. (119) which yields,

— 1 /(a3 T/ =/ 3/5556" Fro—=IN 13 1

. a:(ﬁ-J(ac))dx+Tﬂ- J(Z")d°x. (129)

This result can be simplified by using the following trick. One can express the ith component of
the current as follows,

T = V() =TT = (R, (130)

after applying eq. (122) in the final step. Thus,

/J’id?’ ' = /V;(J”“a:”') d*r' =0, (131)
after converting to a surface integral at infinity, which vanishes under the assumption of a localized
current. Hence, the last term in eq. (129) vanishes, and we are left with

1 Lo
P —/:i;”(ﬁ-J’(a‘c”))d%’. (132)

C
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We can rewrite the integrand of eq. (132) by using the vector identity
& (B-J'(@)) =B x (& x J(@&))+ T (&)B-z).

Inserting this result into eq. (132) and using eq. (123), it follows that

- ]_ oy -
F—23 xm + —/J/(:z’)(g-:z') P (133)
C

The remaining integral can evaluated by employing eq. (130) for J'. In particular, the ith
component of the integral in eq. (133) is

1 19027 .,.05 33,7 ﬁj rix7! (7l i\ 33,0 ﬁj tk ti~x7! (TN 43 ﬁj 13,00 33,0
E/J pla’ld :?/xjvk(J ) dx :—?/J V(2 d’x :—?/J]a? d’z’,

(134)
after an integration by parts, where the surface integral at infinity can be dropped as it vanishes
for a localized current. In the final step of eq. (134), we used V/(2'7) = ¢/ and summed over the
repeated index k. Thus, eq. (134) yields

/f’(:z-”)(ﬁ.gz/) APz = —%/f (B-T'(&) &' ~ —p,

where we have used eq. (132) in the final step. Inserting this result back into eq. (133) yields

Solving for p, we end up with
p=0xm'. (135)

For completeness, we shall evaluate /m in terms of ', keeping only terms to first order in j.
In this approximation, we have d*z ~ d®z’ and J(&) = J'(&'). Using these results along with
eq. (119), it follows that

1 - 1 - 1 3 7
m:—/;fg’x @) e = [ &x J'(f’)de’=2—/<£’+ﬁx6) x J'(&") d*a’
C C

— + 20 G x /f’(:f:”)d%’,
C

after using eq. (123). However, in light of eq. (131), the remaining integral above vanishes. Hence,
to first order in f3,
m=m. (136)
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ADDENDUM to Problem 5

Although Jackson only asks for the the results to first order in 3, it is not too hard to derive
the exact results. This derivation will be given below.

(a) By assumption, p/(€') is a time-independent charge density in frame K’ which satisfies
eq. (111) [i.e. the total charge vanishes|. We are asked to compute p and m in frame K. By
assumption, this means that we should evaluate these quantities at a fixed time zy in frame K.
Using eq. (118), it follows that

We can simplify this expression by noting that v = (1 — 32)7%/2 implies that 5?92 = 72 — 1.
Substituting for 32 above,

75—21 = —# . (137)
Hence,
=2 — L (3-8 + Buo. (138)
y+1
We can evaluate the Jacobian of the transformation, eq. (138),'
gif = 0ij — # BiB; » (139)

J

which we evaluate at fixed zy. To compute the determinant of the Jacobian, we use the following
general result which is easily proved (see the Appendix following this addendum):

det(éij — aiaj) =1- ‘C_l:|2 .

ox; 2 1 21 1
det(ax,):1—76 = [7+1—7 }:—.
! y+1 ~v+1 v vy

ox; d3a’
d’r = det (&r’.) d’z ol (140)

j
which is just the well-known length contraction in special relativity. Using egs. (115) and (140),
it follows that the charge dq located inside an infinitesimal volume element is

Hence,

It follows that

dq = p(Z) &z = p'(&') d*z (141)

13Tn eq. (139), we do not distinguish between lowered and raised indices, as all involved quantities are three-
dimensional.
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since the factors of v cancel out. Eq. (141) is expected since the electric charge is a Lorentz scalar,
which must be independent of the reference frame used to evaluate it.
We now can compute p'in frame K. Using eqs. (138) and (141),

= / 7 p(@) d'x = / (@) '’ = / {i’/—%(ﬁ'f/)ﬁﬂLﬁfo J(@)d% . (142)

Using eq. (112), it follows that

= —'/_L _’.—'/ 2
pP=7p 7H(ﬁp)ﬁ' (143)

where we have used eq. (111) [i.e., the total charge in frame K’ vanishes| to eliminate the last
term in eq. (142). Indeed, if we work to first order in f, then the second term on the right hand
side of eq. (143) can be dropped and we recover the result of eq. (120).

To obtain m, we start with the exact result obtained in eq. (117). Inserting eq. (143) for p
and using 3 x 8 = 0, it follows that!4

P X8, (144)

—
m =

N[

which is exact to all orders in 3.

REMARK:

One can derive eq. (143) more directly as follows. Using eqgs. (115) and (118),

5— / 2 p(Z) dx = / [ el /;21 <ﬁ-£'>5+wﬁx6} &) d

— / [.rzr + Vﬁ; L (3-8 + yﬁxg} P& 6(xg — ct)d'z .

In the last step, I inserted the integral [ §(zo— ct)dzy = 1 which does not change the result. This
is useful, since d*r = d*a’ = d®s'dz}. Using eq. (118) to express x( in terms of z{,

— - -1 =, = 3./ 1=l / 3 =/ ct I3
P [ |&+ 15t 808 ] 4@ (a4 B - L) i,

after writing y0(zg — ct) = 6([xo — ct]/y) = 0(z) + B-&' — ct/~). Integrating over z/, yields

ﬁ:/ {£/+ (76_21 _7) (B-2)8| /@) d3$'+ctﬁ/P'(il) P

Using eqs. (111) and (137) along with p” = [ &'p/(Z") d*z’, we end up with

— — /7 = — =
pP=p — ﬁ(ﬁ'?')ﬁ>

which reproduces eq. (143). Of course, the two derivations are equivalent.

4Tn the literature, one often finds the result of eq. (144) quoted without the factor of % For a discussion of this

discrepancy, see V. Hnizdo, Magnetic dipole moment of a moving electric dipole, American Journal of Physics 80,
645-647 (2012).
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(b) By assumption, J'(Z') is a time-independent, steady current in frame K’ which satisfies
eq. (122). We are asked to compute p and 1 in frame K. In this computation, it will be quite
useful to derive a formula for the following integral,

/x/iJ/j &

This can be accomplished using a identity similar to that of eq. (130). First we write
T = (@I 2T 4 (T = 2T
We then observe that
A ISl LR VA AV ER L ERAIER AN KR A Gl L
after applying eq. (122), and
2T — 2] = R (g f’)k

Consequently,

/.fl}'lijljd3 I %/([L’/ZJ/J+$/]J/Z)d3x/+%/($/ljlj —x'/jj/i>d3x/

:%/vgfwﬁf%ff+§wk/@?xfﬁd%k (145)

The first term in the second line of eq. (145) can be converted into a surface integral at infinity,
which vanishes under the assumption that the current is localized. The second term is related to
the magnetic moment via eq. (123). Hence,

1/x/iJ'j d*x’ = éFm'F . (146)
c
We are now ready to compute m. We again perform the computation at fixed z(, in which

case we can use egs. (138) and (140). Employing eq. (125),

ﬁz%/fxﬂ@ﬁr
! 7’ 3.3’ (52! —1 = = 3 /
= [ EEE B T @) BT B

7' 1 _1"“/-»/ —/ =
- [{A AT x 6

; LB T x T @) |

v+1

- -
where some of the cross-terms vanish due to 8 X 8 = 0. It is convenient to rewrite the above
expression in component form,

k
ok m/ . Leij’f/ ux/ijlﬁﬂjﬁé_ ST P TNy T W v
v 2ve 32 v+1
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Using egs. (131) and (146), the integrals above are easily evaluated,

Ik
E_m 1 ijk Y= 1 itn_ in j Al Y tin, 1n g e}
m" = + —¢ —e 'm ——€’'m .
v 27y { 32 #B v+1 gp

Summing over the product of e-tensors,

k_m/k i m Y =1 kn _ sinskéypint il ckn _ sin clky pi ol
me= 7-%%m/{7§%55 oM"5") 5 B ;:ﬂéé 5™ B3
m't 1 2 v—1 gl
_ o n 5kn_ k pn _
gl +2¢n(5 5B>{ﬁ2 7+J
m'" v—1 2.1k 3 .2\ ok
="t gy B - (B

after using 3% = (72 — 1) /7. We can also use the latter to combine the first two terms above,
1 2(y—1 1 1
7o 20y+1) 2 gl

Thus, we end up with

_._1 1 -/ v—1 3.0 3
m—§<1+?)m 72(7+1)(ﬁ m')3. (147)

To first order in /3, we can approximate v ~ 1, and it follows that 1% ~ ', which confirms the

result of eq. (136).
Next, we evaluate p’ at fixed xy starting from eq. (128),

pe [@(FT@) a -

C

C

1 - — - - =
p=- / {:E" — LB (B-x") + xoﬁ} (ﬁ-J'(:E/)) A
which we rewrite in component form,

. 1 . ) ) S
pz — _/ [L’” o Y 5zﬂkl’,k —f—!lﬁ'oﬂl 5]J/] d?’{E,.
v+1

Using egs. (131) and (146), the integrals above are easily evaluated,

pi _ Bj {Eijfmlé 7 5iﬁk€kj£m/f} _ (B'X m/)k7

p=8xm, (148)

which is exact to all orders in 3.
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REMARK:

The results of parts (a) and (b) can be combined by linear superposition into the following
result. Suppose a time-independent localized charge density p'(€') of zero total charge and a
time-independent, steady localized current density J- (@) exist in a reference frame K’. In this
reference frame, the system of charges and currents possesses an electric dipole moment p” and a
magnetic dipole moment 7m’. The frame K’ moves with velocity ¥ = Ec in the frame K. Then,
in frame K there is a charge density and current density given by:

— — =5 - - > — - 1 =5 I =4 = —

cp(E) = (o' () + B-T' (&) , J(&@) =J (&) + 7B2 (8-J"(Z))B +~Bcp(Z'),

where v = (1 — 32)~Y/2. Moreover, the electric and magnetic dipole moments in frame K are:
p=p———(B-7)8+8 xm, (149)

v+1
1 1 el o = R

n=c(1+5)m - ——(Bm)F+ip x8. L

m 2<+72>m 2(7+1>(Bm)6+2p X 3 (150)

The above results are exact to all orders in 3. If one sets 71’ = 0 [or p’ = 0], then one recovers
the results of part (a) [part (b)] above, respectively.

An equivalent result can be found by defining the unit vector 8= ﬁ /B. Then, using % =
(72 = 1)/~%, we end up with!®

1 3 3 2 /
ﬁzﬁ’—(l—;) (B-p)B+B XM, (151)

m;%{(u%)m’—(l—%)z(

@@

-m) B+ 5’ xﬁ}. (152)

YEgs. (151) and (152) were obtained in George P. Fisher, The electric dipole moment of a moving magnetic
dipole, American Journal of Physics 39, 1528-1533 (1971). See also Marijan Ribari¢ and Luka Sustersi¢, Moving
pointlike charges and electric and magnetic dipoles, American Journal of Physics 60, 513-519 (1992).
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APPENDIX: Proof of a determinantal formula

Theorem: Let A be an n x n matrix, whose matrix elements are given by:
Ay =05 — aa . (153)
Then, .
det A=1—|a@|*, where |@|* = Za?. (154)
i=1

Proof: The determinant of A is defined as
det A = €;,4y..4, Aviy Aziy - Aniyy
where there is an implicit sum over repeated indices. Plugging in eq. (153),
det A = €;,iyin (014, — 104, ) (025, — 204, - -+ (Opi,, — Anay,) -
Expanding the product above, and using the Kronecker deltas to perform the sums, we obtain

det A = €193..., — A1y €123...n — A2QAj5€1453...n, — = ** — Ay, €123...5,,
2 2 2
=€13.n(l—aj—a5—---—a), (155)

after performing the final set of summations and using the fact that €; ;,..;, vanishes unless all
of its indices are distinct. Note the absence of any terms in eq. (155) that are quartic (or higher
order) in the a;, since all such terms will be symmetric under the interchange of two indices that
are summed against two corresponding indices of the Levi-Civita tensor. For example,

€irig--iny W1 Qi A2A5, = 0,
since a;,a;, is symmetric under the interchange of 7; and iy whereas €;,4,..;, is antisymmetric

under this interchange of indices.
Since €193.., = 1, eq. (155) yields

detAzl—zn:a?,
i=1

which completes the proof.
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