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1. We wish to determine the correct form of the Schrodinger equation for a spin-1

2

particle in an external electromagnetic field. The wavefunction for a spin-1

2
particle

is a two-component “spinor” wave function, where each component is an independent
function of ~x and t. Thus, the Hamiltonian must be a 2 × 2 matrix, whose elements
are also operators on the Hilbert space of square integrable functions.

(a) First consider a free spin-1

2
particle. We demand that H is rotationally invari-

ant. Two candidate Hamiltonians are:

(i) H1 =
~p 2

2m
I , (ii) H2 =

(~σ ·~p)2

2m
.

where I is the 2 × 2 identity matrix. Show that H1 and H2 are in fact identical.

(b) Consider now a spin-1

2
particle with charge q in an external electromagnetic

field. Using the principle of minimal coupling, deduce the Hamiltonians corresponding
to (i) and (ii) above, which include the dependence on the scalar potential φ(~x, t)

and the vector potential ~A(~x, t) [do not choose a specific gauge]. Show that the
two resulting Hamiltonians differ. In particular, in case (ii) above, a term in the
Hamiltonian arises of the form

ge

2mc
~S · ~B ,

where g is called the “g”–factor and ~S ≡ 1

2
~~σ is the spin operator. Using the fact

that the electron has q = −e, what value of g is predicted by this approach?

2. The current density ~j (in the absence of an external electromagnetic field) was
introduced by Shankar in eq. (5.3.8) on p. 166. The corresponding number density
is given by ρ = |ψ(~r)|2. Both quantities are related through the continuity equation
[eq. (5.3.2) of Shankar on p. 165]. It is convenient to redefine these quantities by
multiplying them by the charge e of the particle. Then, the corresponding number
density is reinterpreted as the charge density and the corresponding current density
is reinterpreted as the electromagnetic current density.

(a) Show that the electromagnetic current density for a particle with charge e in
an external electromagnetic field is given by:

~j =
e~

2im

(

ψ∗~∇ψ − ψ~∇ψ∗

)

−
e2

mc
~Aψ∗ψ =

e

m
Re

[

ψ∗

(

~p −
e ~A

c

)

ψ

]

,

where ~A is the electromagnetic vector potential and ~p = −i~~∇.

(b) Show that the continuity equation remains valid. Is the definition of ρmodified
as compared to the case of zero external electromagnetic field?



3. Consider a spinless particle subject to an isotropic three dimensional harmonic
oscillator potential. The Hamiltonian for this problem in the absence of an external
electromagnetic field is given by:

H0 =
~p 2

2µ
+ 1

2
µω2

0
~r 2 , where ~r 2 ≡ x2 + y2 + z2 ,

where ω0 is a positive constant and µ is the mass of the particle with charge q. We
now turn on a uniform magnetic field B parallel to the z axis. Define

ωL ≡ −
qB

2µc
.

(a) Write down the Hamiltonian in the Coulomb gauge in the form:

H = H0 +H1(ωL) ,

where H1 is the sum of an operator that depends linearly on ωL (the paramagnetic
term) and an operator which depends quadratically on ωL (the diamagnetic term).
First compute the energy eigenstates with B = 0. In the presence of a uniform
magnetic field B parallel to the z axis, show that the new eigenstates of the system
and their degeneracies can be determined exactly. Compute the energy eigenvalues
(and their corresponding degeneracies) explicitly for arbitrary ωL.

(b) Show that if ωL ≪ ω0, then the paramagnetic term dominates over the dia-
magnetic term.

(c) Consider the first excited state of the oscillator, i.e. the states whose energies
approach 5~ω0/2 as ωL → 0. Using the results of part (a) what are the energy levels
in the presence of the B field and their degrees of degeneracy, to first order in ωL/w0?
Sketch the energy levels as a function of B.

(d) Now consider the ground state. How does its energy vary as a function of ωL?

Is the ground state in the presence of the B–field and eigenvector of ~L 2? of Lz? of
Lx? Give the form of the wavefunction and the corresponding probability current.
Show that the effect of the B–field is to compress the wave function about the z–axis
in a ratio [1 + (ωL/ω0)

2]1/4 and to induce a current.

4. Consider a charged particle (with charge q) whose motion is confined to a circle of
radius R in the x–y plane, with its center at the origin. A thin magnetic flux tube of
radius r < R is located with its axis along the z-axis. The magnetic field is confined
within the flux tube, and the total magnetic flux through the x–y plane is denoted by
Φ. In particular, the charged particle moves in a region where there is no magnetic
field. It is convenient to work in cylindrical coordinates (ρ, θ, z), where x = ρ cos θ

and y = ρ sin θ. In the region where there is no magnetic field, ~∇ × ~A = 0, which
implies that

~A(ρ, θ, z) = ~∇χ(ρ, θ, z) . (1)



(a) Noting that Stokes’ theorem relates Φ to the line integral of ~A taken along
the circle of radius R, show that the choice,

χ(ρ, θ, z) =
Φθ

2π
,

satisfies Stokes’ theorem and the Coulomb gauge condition.

HINT: Insert the value of χ into eq. (1) and evaluate ~A. Show that the vector
potential points in the θ̂ direction.

(b) The wave function for the charged particle is only a function of θ (since ρ = R
and z = 0 are fixed due to the confined motion). Write down the time-independent
Schrodinger equation for the charged particle wave function ψ(θ) in the cylindrical
coordinate representation (simplifying your equation as much as possible).

(c) Solve the Schrodinger equation of part (b) for the energy eigenvalues and
eigenfunctions. Show that the allowed energies depend on Φ even though the charged
particle on the circle never encounters the magnetic field.

HINT: Show that the energy eigenstates are also eigenstates of ∂/∂θ.

5. The hydrogen atom is placed in a weak uniform electric field of strength E pointing
in the z-direction. The Hamiltonian describing the system is given by:

H =
−~

2

2m
~∇2 −

e2

r
− eEz .

Compute the ground state energy of the system using the variational technique. Use
the trial wave function

ψ(~r) = N(1 + qEz)ψ100(~r) ,

where ψ100(~r) is the ground state wave function of the hydrogen atom (in the absence
of an external electric field), q is the variational parameter, and N is chosen such that
the trial wave function is properly normalized. Ignore all spin effects (i.e., ignore
fine and hyperfine splittings). Since the external electric field is assumed to be weak,
simplify your computations by expanding in E and keeping only the leading term. In
particular, show that the first correction to the ground state energy of hydrogen is
proportional to E2.


