
Physics 216 Problem Set 4 Spring 2010

DUE: MAY 25, 2010

1. (a) Consider the Born approximation as the first term of the Born series. Show
that:

(i) the Born approximation for the forward scattering amplitude [i.e. at θ = 0]
is purely real, and therefore

(ii) the Born approximation fails to satisfy the optical theorem.

Do not assume that the potential is spherically symmetric. However, you may assume
that the potential is hermitian.

(b) Consider the Yukawa potential:

V = −
ge−µr

r
.

In class, we computed the (first) Born approximation to the scattering amplitude.
Consider now the second Born approximation; i.e., the second term in the Born series.
Compute the scattering amplitude in the forward direction, θ = 0, in the second Born
approximation.1 Check to see whether the optical theorem is now satisfied.

HINT: You will need to evaluate 〈~k|V (E − H0 + iǫ)−1V |~k〉, where H0 = ~P
2/(2m).

In class, we inserted a complete set of position eigenstates in order to convert this
matrix element as a multiple integral over d3

r1d
3
r2. However, it is easier to evaluate

the matrix element by inserting a complete set of momentum eigenstates, |k′〉. You
will then only have to evaluate an integral over d3k

′.

(c) Compare the magnitudes of the first and second terms of the Born series for the
forward scattering amplitude. What condition do you find if you require the second
term in the Born series to be smaller than the first term? Compare this condition
with the one you would get for the validity of the Born approximation based on the
formula derived in class.

(d) Using the first Born approximation for the scattering amplitude, compute the
s and p wave phase shifts. Under what circumstances does the s-wave phase shift
dominate? Is the Born approximation valid in this case?

2. Consider the scattering of particles by the square well potential in three dimensions:

V (r) =

{

−V0 , for r < a ,

0 , for r > a ,
(1)

1Do not attempt to compute the scattering amplitude in the second Born approximation for
θ 6= 0. It is extremely messy!
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where V0 is positive.

(a) Obtain the differential cross-section in the Born approximation.

(b) Using the results of part (a), evaluate the total cross-section in the limits of
low and high energy. Specifically, show that at low energies, the cross section can be
approximated by:

σ ≃ σ0(1 + Ak2) ,

where the energy E = ~
2k2/(2m). You should evaluate the constants σ0 and A. In

the high energy limit, show that

σ ≃
C

k2
,

where the constant C should be determined.

HINT: To determine the total cross-section in the high-energy limit, you should con-
vert the integral to a manageable form before making any approximations. First inte-
grate over the azimuthal angle. Then, change variables from cos θ to y = 2ka sin(θ/2) =
ka[2(1− cos θ)]1/2, and express the total cross-section as an integral over y. Now, you
can evaluate the integral by taking the infinite energy limit. However, the result-
ing integral is difficult (warning—Mathematica will have a very hard time with this,
although Maple can do it quite easily!). So, I will help you out by providing the
following result:

∫

∞

0

[jn(y)]2

yp
dy =

2p−2 Γ

(

2n+ 1 − p

2

)

Γ2

(

p+ 1

2

)

Γ(p+ 1) Γ

(

2n+ p+ 3

2

) , (−1 < Re p < 2n+ 1) .

where jn(y) is a spherical Bessel function and Γ2(z) is the square of the gamma
function. Show that the integral you are trying to evaluate corresponds to a specific
choice of n and p above. Then evaluate it.

(c) What is the range of validity of your answers to parts (a) and (b). Consider
separately the limits of low and high energy.

(d) Using the results of part (a), it is possible to perform the integral exactly and
obtain an expression for the total cross-section. Obtain the exact formula for the
cross-section in the Born approximation. Then, check the low and high energy limits
and confirm the results of part (b).

(e) Compute the s-wave phase shift for the scattering of particles by the attractive
square well potential given in eq. (1). At low energies, E = ~

2k2/(2m), one may
neglect the higher partial waves. Hence, for ka ≪ 1, one can assume that only the
s-wave scattering is important. In this limit, compute the differential and total cross-
section for the scattering of particles by the square well potential as a function of k1,
where E+V0 = ~

2k2
1/(2m). Compare these results to the results of parts (a) and (b).

In what limit do the results for the cross-sections coincide?

2



3. Consider the case of low-energy scattering from a spherical delta-function shell,

V (r) = V0δ(r − a) ,

where V0 and a are constants. Calculate the scattering amplitude, f(θ), the differen-
tial cross-section and the total cross-section, under the assumption that ka ≪ 1, so
that only s-wave scattering is important.

HINT: Solve the time-independent Schrodinger equation exactly in the case of ℓ = 0
for the radial wave function, R(r) ≡ u(r)/r. Consider separately the cases of r < a
and r > a. By integrating the Schrodinger equation from r = a − ǫ to a + ǫ (where
0 < ǫ≪ 1), show that

[

du

dr

∣

∣

∣

∣

a+ǫ

−
du

dr

∣

∣

∣

∣

a−ǫ

]

=
2mV0

~2
u(a) .

Inserting your explicit solutions for u(r) for the two cases r < a and r > a into the
equation above, you should be able to determine the s-wave phase shift. In particular,
find an expression for tan δ0 in terms of V0 and the wave number k. Evaluate the
phase shift in the limit of ka≪ 1 to simplify your expression and then complete the
problem.

4. Low energy scattering is parameterized by two parameters: the scattering length

a and the effective range r0. In this problem, you will verify this statement.

(a) Show that in the limit of k → 0, (more precisely, for kb ≪ 1, where b is the
range of the potential V (r), i.e. V (r) ≈ 0 for r > b):

k cot δ0(k) = −1/a ,

where a is a parameter with units of length and δ0(k) is the s-wave phase shift. What
is the cross-section in the limit of zero energy?

(b) Obtain an expression for the partial wave amplitude:

a0(k) =
e2iδ0 − 1

2ik

in the limit of k → 0, using the results of part (a). For what values of k does a0(k)
have poles? Can one associate these poles with the existence of bound states? What
is the relation between the bound state energy Eb, and the scattering length? Obtain
an expression for the total cross-section as a function of the energy E = ~

2k2/(2m),
assuming that the low energy approximation is still valid. Express your result in
terms of Eb.
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(c) Show that by considering the radial integral equation:

(i) Gℓ
−k(r, r

′) = Gℓ
k(r, r

′)∗ ,

(ii) Aℓ(−k, r) = (−1)ℓAℓ(k, r)
∗ ,

(iii) exp(2iδℓ(k)) = exp(−2iδℓ(−k)) .

You will need (i) and (ii) to prove (iii). Using (iii), show that cot δℓ(k) is an odd
function of k. Assuming it has a power series about k = 0, show that:

k2ℓ+1 cot δℓ(k) =
−1

aℓ

+ 1
2
rℓk

2 + O(k4) .

For the case of ℓ = 0, show that a0 and r0 each have dimensions of length.

(d) Obtain expressions for the partial wave amplitude a0(k) and low energy cross-
section in terms of the scattering length a ≡ a0 and the effective range r0 which
appear in the expansion obtained in part (c).

5. In this problem, I will lead you through the steps involved in solving the scattering
problem for a charged particle subject to the Coulomb potential. We shall first solve
the Schrodinger equation,

(

−
~

2 ~∇
2

2m
−
Ze2

r

)

ψ(~r) = Eψ(~r) , for E > 0 . (2)

(a) Define the dimensionless quantity,

γ ≡ −
mZe2

~2k
.

Let ψ(~r) = ei~k·~rX(~r), with E ≡ ~
2k2/(2m). Inserting this result into eq. (2), derive

the following differential equation for X,

~∇
2X + (2i~k· ~∇)X −

2γk

r
X = 0 . (3)

(b) Set up the coordinate system so that the beam is incoming along the z-
direction. Define a new variable,

u = kr −~k·~r = kr(1 − cos θ) .

Show that eq. (3) now becomes

u
d2X

du2
+ (1 − iu)

dX

du
− γX = 0 . (4)
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Solve this equation, subject to the boundary condition that the solution for ψ(~r)
must be non-singular at the origin. Feel free to consult your favorite book on special
functions of mathematical physics.2 Show that the solution to eq. (4) is a confluent
hypergeometric function,

X(u) = C 1F1(−iγ, 1; iu) ,

where C is a constant to be determined.

(c) To determine the constant C, consider the asymptotic behavior of ψ(~r) as
r → ∞. Show that one can choose C such that:

ψ(~r) = ψinc(~r) + ψsc(~r) ,

where the incident wave function is

ψinc(~r) = exp {ikz + iγ ln[k(r − z)]}

(

1 +
γ2

ik(r − z)

)

,

with z = r cos θ, and the scattered wave function is

ψsc(~r) =
exp {ikr − iγ ln[k(r − z)]}

ik(r − z)

Γ(1 + iγ)

Γ(−iγ)
.

HINT: You will need to look up the asymptotic expansion for the confluent hyperge-
ometric function 1F1(a, b; x) in the appropriate reference book (see footnote 1).

(d) Define the Coulomb scattering amplitude by:

ψsc(~r) =
ei[kr−γ ln(2kr)]

r
fc(θ), as r → ∞ .

Obtain an explicit expression for fc(θ). Express your answer in terms of the pure
phase factor, e2iδ0 ≡ Γ(1 + iγ)/Γ(1 − iγ).

(e) Compute the probability currents jinc and jsc and following the same procedure
used in class, show that:

dσ

dΩ
= |fc(θ)|

2 .

Using the expression for fc(θ) obtained in part (d), compute the differential cross
section and verify that your result coincides with the Rutherford scattering formula.
Show that the total cross section σ diverges.

(f) Show that the poles of fc(θ) correspond to the bound states of a hydrogenic
atom with atomic number Z.

2One of my favorites is N.N. Lebedev, Special Functions and their Applications (Dover Publica-
tions, Inc., New York, NY, 1972). The Dover books are generally not very expensive, and this book
in particular is well worth the investment. Of course, you can solve eq. (4) using the standard series
technique for solving differential equations, but this will require an additional investment in time.
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(g) Expand fc(θ) in partial waves:

fc(θ) =

∞
∑

ℓ=0

(2ℓ+ 1)Pℓ(cos θ)fℓ . (5)

Project out fℓ by expressing it as an integral3 over cos θ. Note that this integral
diverges for real values of γ. To circumvent this unfortunate fact, evaluate the integral
for Re(−iγ) > 0 and analytically continue the result to pure imaginary γ. Simplify
the resulting expression using the appropriate gamma function identities. Verify that
the following result is obtained:

fℓ =
1

2ik
e2iδℓ ,

where4

e2iδℓ ≡
Γ(ℓ+ 1 + iγ)

Γ(ℓ+ 1 − iγ)
. (6)

Note that fc(θ) diverges at θ = 0 (check this by showing that the series given by eq. (5)
diverges when cos θ = 1). This is not surprising since σ diverges, which implies that
the imaginary part of the forward scattering amplitude must also diverge due to the
optical theorem.

(h) [EXTRA CREDIT] Finally, show that the Coulomb wave function ψ(~r) can
be expanded in partial wave and takes the form

ψ(~r) =
1

kr

∞
∑

ℓ=0

(2ℓ+ 1)iℓPℓ(cos θ)eiδℓFℓ(γ, kr) ,

where Fℓ(γ, kr) exhibits the asymptotic behavior,

Fℓ(γ, kr) −→ sin
(

kr − γ ln(2kr) − 1
2
ℓπ + δℓ

)

, as r → ∞ ,

which justifies the identification of δℓ as the phase shift for the Coulomb scattering
problem. Notice the appearance of the logarithm in the argument of the sine function.
This is a remnant of the long-range nature of the Coulomb potential, which cannot
be neglected even as r → ∞.

3After setting z = cos θ, the following integral, taken from I.S. Gradshteyn and I.M. Ryzhik,
Table of Integrals, Series, and Products, 7th Edition (Elsevier Academic Press, Amsterdam, 2007),
should be useful:

∫ 1

−1

(1 − z)pPℓ(z)dz =
(−1)p 2p+1 [Γ(p + 1)]2

Γ(p + ℓ + 2)Γ(1 + p − ℓ)
, where Re p > −1 .

4In particular, note that for complex z, the gamma function satisfies the relation Γ(z∗) = Γ(z)∗.
Hence, eq. (6) is the ratio of a complex number and its complex conjugate, which must be a pure
phase.
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