
Physics 216 Problem Set 5 Spring 2010

DUE: JUNE 8, 2010

FINAL EXAM ALERT: The final exam will be take place from 11 am–2 pm on
Wednesday June 9, 2010 in ISB 235. Please note the change of date, time and
location. The exam will cover the entire course. During the exam, you may consult
Shankar and Baym, your class notes (and any other handwritten notes), and any of
the homework solutions and class handouts that are posted on the course website.

1. Tritium (the isotope H3), which is initially in its ground state, undergoes spon-
taneous beta decay, emitting an electron of maximum energy of about 17 keV. The
nucleus remaining is He3.

(a) Calculate the probability that the electron of this ion is left in a quantum state
of principal quantum number n = 2.

(b) What is the probability that the electron of this ion is left in quantum state
with ℓ 6= 0 ?

In this problem, you should neglect nuclear recoil. Note the energy of the emitted
electron. What is the relevant approximation? Explain.

2. Consider a two-level system with E1 < E2. There is a time-dependent potential
that connects the two levels as follows:

V11 = V22 = 0, V12 = γeiωt, V21 = γe−iωt (γ real) ,

where Vij = 〈i|V |j〉. At time t = 0, it is known that only the lower level is populated—
that is, c1(0) = 1 and c2(0) = 0. Note that a general state of the system can be
expressed as a linear combination of eigenstates of the unperturbed Hamiltonian (in
the Schrodinger picture):

|ψ(t)〉 =
2

∑

n=1

cn(t)e−iEnt/~ |n〉

(a) Starting with the time-dependent Schrodinger equation, derive the following
differential equation for ck(t):

i~
dck
dt

=
2

∑

n=1

Vkn(t)e
iωkntcn , (k = 1, 2) , (1)

where Vkn(t) ≡ 〈k|V (t)|n〉 and ~ωkn ≡ Ek − En. By solving the above system of
differential equations exactly, find |c1(t)|

2 and |c2(t)|
2 for t > 0.



HINT: It is convenient to define new coefficients,

c ′1(t) ≡ ei(ω21−ω)t/2 c1(t) , c ′2(t) ≡ e−i(ω21−ω)t/2 c2(t) .

Then, show that eq. (1) reduces to a matrix differential equation of the form

i~
d

dt

(

c ′1(t)
c ′2(t)

)

= A

(

c ′1(t)
c ′2(t)

)

, (2)

where A is a time-independent 2 × 2 traceless hermitian matrix. Verify that the
solution to eq. (2) is

(

c ′1(t)
c ′2(t)

)

= e−iAt/~

(

c ′1(0)
c ′2(0)

)

.

By writing A = ~a·~σ (where the vector ~a is uniquely determined), it is straightforward
to compute e−iAt/~ and complete part (a) of the problem.

(b) Do the same problem using time-dependent perturbation theory to lowest
nonvanishing order. Compare the two approaches for small values of γ. Treat the
following two cases separately: (i) ω very different from ω21, and (ii) ω close to ω21.

3. This problem provides a crude model for the photoelectric effect. Consider the
hydrogen atom in its ground state (you may neglect the spins of the electron and
proton). At time t = 0, the atom is placed in a high frequency uniform electric field
that points in the z-direction,

~E(t) = E0ẑ sinωt .

We wish to compute the transition probability per unit time that an electron is ejected
into a solid angle lying between Ω and Ω + dΩ.

(a) Determine the minimum frequency, ω0, of the field necessary to ionize the
atom.

(b) Using Fermi’s golden rule for the transition rate at first-order in time-dependent
perturbation theory, obtain an expression for the transition rate per unit solid angle
as a function of the polar angle θ of the ejected electron (measured with respect to
the direction of the electric field).

HINT: The matrix element that appears in Fermi’s golden rule describes a transition
of the negative-energy bound electron in its ground state to a positive-energy “free”
electron. The wave function of the latter is actually quite complicated, since one
cannot really neglect the effects of the long-range Coulomb potential. Nevertheless,
you should simplify the computation by assuming the wave function of the ejected
electron is a free-particle plane wave, with wave number vector ~k. (Note that the

direction of ~k corresponds to that of the ejected electron).

(c) Integrate the result of part (b) over all solid angles to obtain the total ionization
rate as a function of the frequency of the field. Determine the value of ω [in terms
of ω0 obtained in part (a)] for which the total ionization rate is maximal.



4. Consider the spontaneous emission of an E1 photon by an excited atom. The
magnetic quantum numbers (m and m′) of the initial and final atomic state are
measured with respect to a fixed z-axis. Suppose the magnetic quantum number of
the atom decreases by one unit.

(a) Compute the angular distribution of the emitted photon.

(b) Determine the polarization of the photon emitted in the z-direction.

(c) Verify that the result of part (b) is consistent with angular momentum con-
servation for the whole (atom plus photon) system.

HINT: The material on pp. 282–285 of Baym should be helpful.

5. Consider the elastic scattering of photons off electrons in atoms, assuming that the
incident photon energies are large compared to the atomic binding energies. However,
you should assume that the photon wavelength is still substantially larger than a
typical atomic radius.

(a) Using the quantum theory of radiation, argue that the ~A field operator must
occur at least twice in the matrix element in order that there be a non-zero contri-
bution in perturbation theory.

(b) Recall that there is a quadratic ~A· ~A term in the interaction Hamiltonian.1

Compute the differential cross-section to first order perturbation theory in the dipole
approximation. Show that:

dσ

dΩ
= r2

0|~ǫλ ·~ǫ ∗

λ′ |2 ,

where r0 ≡ e2/(mc2) is the classical radius of the electron.

(c) Compute the total cross-section, assuming that the initial photon beam is
unpolarized and the polarization of the final state photon is not measured.

1One can show that this term, taken at first order in the perturbation expansion, will dominate
the second order contribution due to the ~j · ~A term of the interaction Hamiltonian, assuming as
above that the energy of the incident photon is large. (EXTRA CREDIT: Verify this statement.)


