
Physics 216 Final Exam Spring 2010

FINAL EXAM INSTRUCTIONS: This is an open book exam. You are permitted to
consult the textbooks of Shankar and Baym, your handwritten notes, and any class
handouts that are posted to the course website. One mathematical reference book
is also permitted. No other consultations or collaborations are permitted during the
exam. In order to earn total credit for a problem solution, you must show all work

involved in obtaining the solution. However, you are not required to re-derive any
formulae that you cite from the textbook or the class handouts. The point value of
each problem is indicated in the square brackets below.

1. [30] An electron is placed in a potential

V (~r) =
−e2

r
+ β(r2 − 3z2) ,

where β is a small parameter. Neglect the spin of the electron.

(a) Compute the shifts of the n = 2 energy levels (you may neglect fine-structure
effects) using first order perturbation theory. Indicate the relative positions of the
energy levels.

(b) Suppose that a weak uniform magnetic field B is applied in the z-direction.
Determine its effect on the levels obtained in part (a) to first order in B.

(c) Repeat part (b) assuming that the weak uniform magnetic field is applied in
the x-direction.

HINTS: When evaluating matrix elements, think before you calculate. Often, you
can show that a particular matrix element is zero without fully computing it. In
part (c), use first order degenerate perturbation theory by taking the “unperturbed”
energy eigenstates and eigenvalues to be the shifted n = 2 levels obtained in part (a).



2. [20] Consider a positively-charged spin-1/2 particle in an external magnetic
field, governed by the Hamiltonian:

H = H0 I − γ ~B ·
~S ,

where I is the identity operator in spin space, ~S is the vector of spin-1/2 spin matrices,
and γ is a constant (for a positively-charged particle, γ > 0). H0 is spin-independent

and is independent of the magnetic field ~B. For simplicity, assume that H0 possesses
exactly one eigenvalue, which is denoted by E.

(a) If the magnetic field is given by ~B = Bẑ (where B > 0), determine the energy
eigenstates and eigenvalues of H .

(b) Assume that the magnetic field is given by ~B = Bẑ for time t < 0. The
system is initially observed to be in a spin-up state. At t = 0, a time-dependent
perturbation is added by modifying the magnetic field. The new magnetic field for
t > 0 is given by:

~B = b (x̂ cosωt− ŷ sinωt) +Bẑ ,

where b > 0. Using first-order time-dependent perturbation theory, derive an expres-
sion for the probability that the system will be found in a spin-down state at some
later time t = T . For what range of values of ω is this result reliable?

3. [20] A spinless particle of charge e and mass m is bound to a three-dimensional
harmonic oscillator potential of angular frequency ω0. The particle is initially in the
state |nx, ny, nz〉 = |1, 1, 0〉.

(a) Compute the lifetime of the state to decay by spontaneous emission of a photon,
in the electric dipole approximation. Take ~ω0 = 1 Rydberg and m = me (the mass
of the electron), and evaluate the lifetime in seconds. Assume that the polarization
of the emitted photon is not measured.

(b) Define θ and φ to be the polar and azimuthal angles of wave vector ~k of the
emitted photon with respect to the fixed z-axis. The wave function of the oscillator
after the emission of the photon is of the form:

|ψ〉 = N
∑

λ

{

(ǫ ∗

λ )y |1, 0, 0〉 + (ǫ ∗

λ )x |0, 1, 0〉
}

, (1)

where ~ǫλ =
(

(ǫλ)x , (ǫλ)y , (ǫλ)z

)

is the polarization vector of the emitted photon and
N is a normalization factor. Determine the normalization factor N as a function of θ
by setting 〈ψ|ψ〉 = 1. Then, compute the expectation value 〈ψ|xy|ψ〉 in terms of the
angles θ, φ, and the fundamental constants of the problem.



4. [30] Consider the scattering of spinless particles in an attractive exponential spher-
ically symmetric potential:

V (r) = −V0 exp(−r/r0) ,

with V0 > 0. It is convenient to define two dimensionless variables for this problem:
ξ ≡ kr0 and η ≡ 2mV0r

2

0
/~2, where ~

2k2/(2m) is the energy of the incoming beam.

(a) Compute, the scattering amplitude and the differential and total cross sections,
in the Born approximation, in terms of the variables ξ, η and r0. Evaluate the total
cross section in both the low and high energy limits.

(b) Determine the validity of the Born approximation at fixed energy. (That is,
what relation must ξ and η satisfy?) What is the requirement in order that the Born
approximation be valid at all energies?

(c) Using the scattering amplitude obtained in part (a), calculate the s-wave and
p-wave phase shifts. [NOTE: it is sufficient to evaluate eiδℓ sin δℓ for ℓ = 0, 1.]

HINT: Expand the Born approximated scattering amplitude in a partial wave expan-
sion, and use the orthogonality of the Legendre polynomials to obtain expressions for
eiδℓ sin δℓ for ℓ = 0 and ℓ = 1 in terms of ξ and η.

(d) Using the results of part (c), compute both the s-wave and p-wave phase shifts
in the low and high energy limits. Sketch a graph of δℓ/η as a function of ξ for ℓ = 0
and ℓ = 1. Do you find the expected behavior at low energies?

(e) Using the s-wave phase shift, compute the total cross section in the low energy
limit, and show that the result is the same as obtained in part (a).


