
Physics 216 Midterm Exam Spring 2010

MIDTERM EXAM INSTRUCTIONS: This is an open book exam. You are permitted
to consult the textbooks of Shankar and Baym, your handwritten notes, and any class
handouts that are posted to the course website. One mathematical reference book
is also permitted. No other consultations or collaborations are permitted during the
exam. In order to earn total credit for a problem solution, you must show all work

involved in obtaining the solution. However, you are not required to re-derive any
formulae that you cite from the textbook or the class handouts. The point value of
each problem is indicated in the square brackets below.

1. [40] Suppose we define

G(t) ≡
∫

∞

−∞

dxK(x, t, ; x, 0) (1)

whereK(x, t; x′, t′) is the propagator. Assume that the system has a time-independent
Hamiltonian and a discrete energy level spectrum.

(a) Prove that the Fourier transform of G,

G̃(E) ≡ lim
ǫ→0

i

~

∫
∞

0

G(t)eiEt/~ e−ǫt dt (2)

has poles at all the discrete energy levels of the system. Take ǫ to be a positive

infinitesimal quantity.

HINT: For a time-independent Hamiltonian, the time-evolution operator has a simple
form. Writing K(x, t; x′, t′) as a coordinate-space matrix element of the time evolution

operator, insert a complete set of energy eigenstates. Then, compute G(t) and G̃(E).

(b) Consider the harmonic oscillator with a charge e in one dimension. You are
asked to calculate the discrete energy levels of the system, when it is placed in a
uniform electric field of strength E . Compute the levels in three independent ways:

(i) using the WKB approximation;

(ii) using the path integral technique;

(iii) solving the Schrodinger equation exactly.

Do you expect the same result from all three methods?

HINTS: (i) In the WKB approximation, the following indefinite integral is useful:

∫ √
ax2 + bx + c dx =

2ax+ b

4a

√
ax2 + bx+ c −

(
4ac− b2

8a

)
1

(−a)1/2
sin−1

(
2ax+ b√
b2 − 4ac

)
,

where a < 0 and b2 − 4ac > 0.



(ii) In the path integral technique, proceed as follows. First, write the expression
for the path integral. Next, by a change of variables, eliminate the linear term. The
resulting expression is a phase factor times the path integral for the ordinary harmonic
oscillator. Then, employ the results of part (a) above.

2. [40] In problem 4 of problem set #3, we considered the hydrogen atom in a uniform
magnetic field which points in the ẑ-direction. The energy levels were obtained as
a function of B. This is the well-known Zeeman effect. However, the terms in the
Hamiltonian that are quadratic in B were neglected. We now want to see the effect
of including the latter. To make the analysis simple, you may ignore the effects
of electron and nuclear spin (i.e., the fine-structure and hyperfine structure can be
neglected).

(a) For simplicity, we shall first consider the n = 1 ground state of hydrogen. Eval-

uate the first-order energy shift due to a uniform magnetic field ~B = Bẑ, assuming
that the term in the Hamiltonian that is quadratic in B can be neglected.

(b) Compute the quadratic Zeeman effect for the ground-state hydrogen atom, due

to the usually neglected e2 ~A 2/(2mc2) term in the Hamiltonian taken to first order in
perturbation theory. Assume that the external magnetic field is uniform and points
in the ẑ-direction. Writing the energy shift as ∆E ≡ −1

2
χ ~B 2, obtain an expression

for the diamagnetic susceptibility, χ.

(c) How large a magnetic field is required in order that the two contributions
obtained in parts (a) and (b) are of the same order of magnitude?

NOTE: The rest-mass of the electron is mec
2 ≃ 5.11× 105 eV. Other useful numbers

are:

α =
e2

~c
≃ 1

137
, µB =

e~

2mec
= 5.788 × 10−9 eV/gauss .

(d) In the ground state of helium, the total Lz and Sz vanishes. Hence, at leading
order only the quadratic Zeeman effect is relevant. Compute the diamagnetic suscep-
tibility of the helium atom in its ground state, and compare with the measured value
of −1.88 × 10−6 cm3/mole.

HINT: For the ground state helium wave function, use the wave function obtained in
class by the variational method (recall that the result was a product of two ground-
state hydrogen atom wave functions, ψ(~r1,~r2) = ψ100(~r1)ψ100(~r2), where

ψ100(~r) =

(
Z3

πa3
0

)1/2

e−Zr/a0 ,

with Zeff = 27/16). Thus, with hardly any additional calculation, one can write down
the expression for ∆E by inspection using the results of part (a). Finally, recall that
one mole consists of 6.022 × 1023 helium atoms.



3. [20] Calculate the wavelength, in centimeters, of a photon emitted under a hyperfine
transition in the ground state of deuterium. Deuterium is “heavy” hydrogen, with
an extra neutron in the nucleus. The proton and neutron bind together to form a
deuteron, with spin 1 and magnetic moment

~µd =
gde

2Md

~I ,

where ~I is the spin-vector of the deuteron, gd = 1.71 is the deuteron g-factor and Md

is the mass of the deuteron.

DATA: Take the deuteron mass to be roughly twice the proton mass. You can also
use the following results. The ratio of the proton to electron mass is Mp/me ≃ 1836.
The rest-mass of the electron is mec

2 ≃ 5.11 × 105 eV. Other useful numbers are:

α =
e2

~c
≃ 1

137
, ~c = 1.973×10−5 eV-cm , a0 =

~
2

me2
=

~

mcα
≃ 0.5×10−8 cm .


