IL NUOVO CIMENTO Vor. 23 B, N. 2 11 Otftobre 1974

A New Rigorous Approach to Coulomb Scattering.
J. R. TAYLOR
Department of Physics, Imperial College - London

Department of Physics and Astrophysics, University of Colorado - Boulder, Colo. (*)

(ricevuto il 23 Gennaio 1974)

Summary. — This paper establishes two properties of nonrelativistic
Coulomb scattering. The first is that, when considered as a distribution,
the Coulomb partial-wave series is convergent (even though divergent
as a function) and converges to the Coulomb amplitude. The second
property, the proof of which uses the first, is that the amplitude for any
sereened Coulomb potential converges as a distribution to the Coulomb
amplitude (times an overall phase factor) when the screening radius
tends to infinity. It is argued that this second property can be made
the basis of an economical but rigorous theory of Coulomb scattering.

1. — Introduction,

One of the most famous and frustrating anomalies in scattering theory is
Coulomb seattering. Because the Coulomb potential

Vir) =

< I

falls off so slowly when r — co, almost none of the standard results of ordinary
nonrelativistic scattering can be applied in the case of Coulomb scattering.
To mention just four such results, we remind the reader that 1) the asymptotic

(*y Permanent address. Work supported by a Faculty Fellowship from the Univer-
sity of Colorado.
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condition—the cornerstone of conventional scattering theory— is not satisfied
when Coulomb forees are present; 2) with a Coulomb potential, the standard
definitions of the scattering amplitude and phase shifts are meaningless;
3) the Coulomb partial-wave series is divergent; 4) the amplitude for a screened
Coulomb potential has no limit when the screening radius goes to infinity.

One way of avoiding some of the difficulties has been to broaden the normal
framework of scattering theory so as to include the anomalous case of the
Coulomb potential. This approach has been pursued by DOLLARD (*) and by
AMREIN, MARTIN and MisrA (%), who have been able to replace the usual
asymptotic condition with a weaker, more general condition that ¢s satisfied
by the Coulomb potential. Since their generalized asymptotic condition is
still strong enough to describe the essential observed features of scattering
experiments, their work provides a rigorous and physically satisfactory basis
for a theory that can handle problems involving Coulomb forces.

Nevertheless, one cannot help feeling that the labour of constructing the
theory of DOLLARD et al. is, in a certain sense, unnecessary. This feeling is based
on the fact that in practice Coulomb potentials are always screened. (For
example, the Coulomb potential of a nucleus is screened by the atomic electrons,
and even in the best available vacuum the potential of an isolated charge would
be screened by polarization of the residual particles.) This fact suggests that
one ought to be able to build a theory of Coulomb scattering which discusses
only screened Coulomb potentials. Since these screened potentials are « well
behaved » short-range potentials, no extension of the conventional (short-range)
theory would be needed.

In this paper I propose a theory of Coulomb scattering on these lines. The
theory is based on two main results, which are as follows.

The first result concerns the Coulomb partial-wave series. It has long been
known (see ref. (*)) that the partial-wave series constructed from the Coulomb
partial-wave amplitude is divergent, and conversely that the full Coulomb
amplitude has no partial-wave expansion. (We review both of these disagreeable
results in Sect. 2.) However, I shall prove in Sect. 3 that, when considered as a
distribution, the Coulomb partial-wave series is convergent and that its limit
(as a distribution) is precisely the full Coulomb amplitude. More explicitly,
if we multiply the partial-wave series by any suitably smooth funection (*)
@(6) and integrate over all angles, then the resulting series is convergent, and

(v J. D. DoLLaRD: Journ. Math. Phys., 5, 729 (1964).

() W. 0. AMrEIN, P. A. MarRTIN and B. Misra: Helv. Phys. Acta, 43, 313 (1970).
(®) L. MarQUEzZ: Am. Jowrn. Phys., 40, 1420 (1972).

(") As discussed in Sect. 3, we shall require that ¢ vanish in the direction 6= 0
and that, as a function of cos 0, it be twice differentiable with continuous second
derivative.
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its sum is precisely the integral of ¢(f) times the full Coulomb amplitude ().

It should perhaps be emphasized that this resnlt—that the Coulomb partial-
wave series is equal to the Coulomb amplitude provided both are multiplied
by @(0) and integrated first—is entirely natural and satisfactory. The point
is that in any real experiment one does not observe the amplitude itself, but
rather the integral of the amplitude times some smooth ¢(6). For example,
in the scattering of a single particle off a fixed potential, the initial state of any
experiment is characterized by some wave packet ¢, (p); and the quantity
that is observed is the corresponding outgoing packet

PouP) = f p’<{pISIp") gilp’) fd!?’ f(p<P)oulp),

where {p|S|p'> denotes the momentum-space S-matrix element and f(p<p')
the corresponding scattering amplitude (all in the notation of ref. (°)). The
most that can be measured—even in principle, and in practice we measure
much less—is this integral involving the amplitude times the ingoing wave
function; that is, we do not observe the amplitude itself, but only the ampli-
tude « smeared » by some suitable test function. This means that our result
—convergence of the smeared partial-wave series to the smeared amplitude—
is exactly what is wanted for discussion of real measurements (™).

The second main result, whose proof uses the first, concerns the possibility
of replacing the Coulomb potential

(1.1) Viry=ylr
by a sereened Coulomb potential, in the limit that the screening radius is made

large. The precise nature of the screening is unimportant; for example, we
could consider an exponentially screened potential

(1.2) Ve(r) =ZreXp [—r/el,

(") That some such result must hold has been suggested by several authors. In par-
ticular, HoLDEMAN and THALER () have stated precisely our result, that the Coulomb
partial-wave series converges as a distribution to the Coulomb amplitude. However,
they make no attempt to justify the assertion (concentrating instead on showing that
the coefficients in a «formal » Legendre expansion of the Coulomb amplitude can be
given a meaning) and there appears to be no published proof of the result.

(9) J. T. HoLpEMAN and R. M. Traver: Phys. Rev., 139, B 1186 (1965).

(®) J. R. Tavror: Scattering Theory (New York, N.Y., 1972).

(**) In the case of short-range potentials, it is of course very useful that the partial-
wave series converges to the amplitnde as a function, without any smearing. Nonetheless,
only the weaker result (convergence as a distribution) is really needed; and in Coulomb
scattering only the weaker result holds.
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or a sharply truncated potential
(1.3) Ve(ry=~6(¢—r),

where 6(z) is the step function

0x)=0 (2<0),
=1 (z>0),

or, quite generally,

(1.4) Ve(r)= %at’(r) )

where the screening function of(r) tends to zero as r — oo (with p fixed) but
approaches 1 as the screening radius ¢ — oo (with » fixed) ().

The motivation for considering such potentials has already been mentioned
briefly: First, the screened potential V¢ is a short-range potential and so
{(unlike the Coulomb potential) it satisfies all of the basic assumptions of ordinary
scattering theory; second, one would certainly expect the observable properties
of V¢ to approach those of the Coulomb potential V as ¢ — co. These ideas
are not new. In fact they are almost as old as scattering theory itself—dating
back at least to Gordon’s classic paper on Coulomb scattering (5)—and have
been stated explicitly by GOLDBERGER and WATSON (ref. ("), pp. 259-269),
for example. Nonethelegs, there appears to have been no clear statement
(much less a proof) of the sense in which the properties of V¢ go over to those
of V as ¢ - oco. The two main difficulties have always been, first, that as a
function the amplitude for V¢ does wnot (in general) approach the Coulomb
amplitude (**), and, second, that the simplest way to approach the problem
is by means of the partial-wave series, which in the Coulomb case is unfor-
tunately divergent.

The result which I shall prove in Sect. 4 is that as a distribution the ampli-
tude for the screened potential V¢ does converge to the Coulomb amplitude,
times an overall phase factor. This means that the physically observable prop-

(*) Our precise assumptions about the function «e(r) are given in Sect. 4.

() W. GorDON: Zeits. Phys., 48, 180 (1928).

() M. L. GoLDBERGER and K. M. Warson: Collision Theory (New York, N. Y., 1964).
(**) As we shall discuss in Sect. 4, there may be certain screening functions for which
the screened amplitude does converge to the Coulomb amplitude, at least within an
overall phase factor. For example, this is apparently true for the exponential screen-
ing (1.2), at least if y is small. Nonetheless, this is certainly not true for all sereening
functions.
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erties of V¢ become independent of g as ¢ becomes large, and that in the limit
they coincide precisely with the corresponding Coulomb quantities.

This result is the essential foundation of the alternative treatment of Coulomb
scattering mentioned at the beginning of this Introduction. This treatment
would begin with the observation that in practice the potential of any point
charge is always screened; that is, the actual potential in any real Coulomb-
scattering experiment is not the pure Coulomb (1.1) but is a screened Coulomb
of the type {(1.4). Since this potential is of short range all of the standard results
of scattering theory hold good. The whole scattering process can therefore be
satisfactorily described and the various scattering probabilities computed
within the normal theoretical framework. Having carried through this whole
programme, we would then appeal to our result to guarantee that everything
obtained in this way is actually independent of the exact nature of the screening
and of the precise value of the screening radius g, provided only that p is large;
and that the results coincide with what one would obtain using the pure Coulomb
amplitude.

To summarise briefly: Our results establish that Coulomb-scattering ex-
periments can be consistently described within the framework of conventional
scattering theory by the use of screened Coulomb potentials, and that the
resulting predictions are independent of the nature and radius g of the screening,
provided p is large. Further, they justify the use of the pure Coulomb ampli-
tude in situations where the Coulomb potential is in fact always screened.

2. — Divergence of the Coulomb partial-wave series as a function.

In this Section we introduce the necessary notations, and review the reasons
for the divergence of the Coulomb partial-wave series.

We shall discuss the scattering of a spinless particle with charge ¢, and
mags m off a fixed target of charge e¢,. The potential is therefore

(2.1) V(r) = e,efr =y|r.

We use units with #=m =1 and, since we shall only be concerned with a
single fixed energy, we shall also set the incident momentum p = 1. We shall
throughout use the abbreviation

z = cosf,

where 6 is the usual scattering angle.

It is a notorious fact that in Coulomb scattering one cannot define either
a phase shift or a gcattering amplitude, in the ordinary sense. Nonetheless,
it is usual to introduce what are called the Coulomb phase shifts and Coulomb
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amplitude, which are defined as follows:

(2.2) o, = Coulomb phase shift = argl"(l+ 1+ iy)

and

exp [— iy ln sin? (6/2)] _

(2.3) f(#) = Coulomb amplitude = — y exp [270,] 2 sin® (6/2)

,exp[—iyIn (1 —a)] , Iy
=y EREREO g — gy,

where = cos8 as usual and

y'= — y exp [2ig,] exp [iy In2].

In terms of the Coulomb phase shifts o,, one defines a Coulomb partial-wave
amplitude in the usual way:

_ exp[2io)]—1 s§;—1

fi 24 T2 !
where

B . _F(l+1—|—iy)

sl__exp[Zzo‘l]—m

is called the Coulomb partial-wave S-matrix. While none of these quantities
have their conventional significance (in terms of asymptotic forms of wave
functions, for example), it is true that the experimentally observed Rutherford
cross-section is correctly given by the usual formula

do . 2
a0~ M@= T @y -

Before proceeding to the main results of this paper, I would like to recall
two important facts. First, if one defines a Coulomb partial-wave series

(2.4) %(2l + 1)f,P(x) divergent,

then this series is divergent; and second, it is impossible to expand the full
Coulomb amplitude in a Legendre series of the type

(2.5) flw) = X2l + 1)a, P, (x) false.
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To see that the partial-wave series (2.4) is divergent we note, from their
definition (2.2), that the phase shifts o, satisfy

0, = oy + aretg (p[l) (55> oo+ /L.

Thus as { — oo, the phase shifts do not go to zero; instead they increase
without limit like Inl. This means that the partial-wave amplitudes do not
tend to zero, but move indefinitely around the unitary circle, approaching
their maximum value (when f, = ¢) at regular intervals. Since

P+1)= (L 1),

it is immediately clear that the partial-wave series (2.4) is divergent in the for-
ward and backward directions. To find out what happens at other angles
we need Laplace’s formula (see, for example, ref. (%), p. 193)

JT

(2.6) Picos0)= (515%1—6)% cos ((l + %) 60— 4) + 0(-%),

which holds uniformly on any interval
— 14 e<eosbfgl —¢

(¢>0) as I—oo. The decrease, like I}, of the Legendre polynomials is clearly
swamped by the factor 21 +1 in the partial-wave series, the terms of the
series oscillate under an envelope proportional to I}, and the series diverges.

We remark that the divergence of the Coulomb partial-wave series in the
forward direction (0= 0) is certainly to be expected, since the Coulomb am-
plitude is itself infinite at § = 0. However, the divergence for 6 0 is per-
haps unexpected and certainly a nuisance, since when 650 the Coulomb
amplitude and cross-section are finite and completely well behaved. In par-
ticular, since the partial-wave series constructed with the phase shifts o, is
divergent, it becomes a little obsecure why the ¢, should be called « Coulomb
phase shifts » at all.

To see that the full Coulomb amplitude f(x) cannot have any partial-wave
expansion of the type (2.5), let us assume that such an expansion is possible.
To simplify the argument we shall suppose that the expansion is uniformly
convergent, in which case we shall arrive at an immediate contradiction. This
argument will leave open the relatively exotic possibility that an expansion
like (2.5) exists but is not uniformly convergent; the proof that this too is
impossible is more complicated and will be given later, at the end of Sect. 5.

(®) G. 8zEGO: Orthogonal Polynomials (New York, N.Y., 1959).
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If we assume that the expansion (2.5) is uniformly convergent for all z,
then it follows that the expansion coefficients are given by the familiar formula

2.7) a:= 3} [ f(@) Pi(@)do.

The integrand f(x)P,(z) is continuous and bounded on any subinterval
[—1,1—¢]; thus the integral

1—-¢

(2.8) a(e) = } f (%) Py(w) da

certainly exists for any &> 0. Unfortunately the singularity of f(x) at z =1
means that this integral has no limit as ¢ — 0. To prove this it is sufficient
to consider the case 1= 0 (since all of the P, approach 1 at x=1)

1—8 1-g

afe)=1 [ @) dz=(y'[2) [ exp— iy In (1 - @) def(1 — o) =

= ([2) [ expliyé1as.

—In2

As £ — 0, the upper limit tends to infinity and the integral oscillates without
limit. (For future reference, we note, however, that a;(¢) does remain bounded
as &€ — O.)

Since a,(¢) has no limit as ¢ — 0, it follows that the original integral (2.7)
for a, cannot exist, and we have the desired contradiction.

3. — Convergence of the Coulomb partial-wave series as a distribution.

We shall now show that, even though the Coulomb partial-wave series is
divergent as a funetion, it is nonetheless convergent as a distribution, and that
its limit is the full Coulomb amplitude. We shall write this result as

(3.1) (2l 4+ 1) f, P,(x) = f(x) (a8 a distribution)

aMg

to emphasize that the limit is in the sense of distributions. This means that,
if we multiply both sides by a suitably smooth test function ¢(x) and integrate
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from — 1 to 1, then the resulting two numbers are equal:

(3.2) 5‘,{ f¢<w>(2z+1)f11>z(w)dw}: f P (@) () 4z

-1 ~1

It is convenient to introduce the notation
1
(3.3) g, = (21 + l)fqz(w)Pl(x) dz,
-1

in terms of which the desired result becomes

1

(3.4) gm — f o(@)f(z) do .

-1

Naturally we expect this result to hold only when ¢() is in some space of
« reasonable » funetions. Firstly, ¢ must certainly be a smooth function. In this
connection it would seem quite reasonable to require ¢ to be infinitely differ-
entiable. However, it proves sufficient for our purposes to require only that ¢
be twice differentiable, with a continuous second derivative, on the closed
interval [—1,1] We denote the space of all such functions by C2[—1,1],
and shall insist from now on that ¢ belong to this space.

Secondly, we must require that ¢(x) vanish at x=1, that is at 0 = 0.

1
Mathematically, this requirement is made to ensure that the integral f(pf dw
-1
exists, inspite of the singularity of f at z= 1. Physically, the requirement
corresponds to the well-known fact that in Coulomb scattering it is impossible
to measure a meaningful forward cross-section.
Accordingly, what we shall prove is that (3.4) holds for all ¢(x) satisfying
peC—1,1] and ¢(1)=0.
Before we prove this result we recall the important relation (")
(3.5) 2 (214 1) Pya) = 20(1 — @) (as a distribution) .

This is a special case of the familiar completeness relation

> (@2U+1)P,(z)Py) = 20(x—y)  (as a distribution),

1
(*) In this relation the meaning of 8(1 —=) is that {p(z)d(1 —a)dz= g(1).
-1
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whose proof can be found in the standard texts (e.g. ref. (), pp. 425-429),
and certainly holds for all test functions in C2[—1,1]. In particular, we are
interested in test functions ¢ which vanish at # = 1. For such functions, the
delta-function on the right-hand side of (3.5) produces ¢(1)= 0. Thus we
can write

(3.6) S@I+1)Px)=0 (as a distribution for test
functions with ¢(1) = 0).

The significance of (3.6) can be seen if we note that the series on the left is a
partial-wave series in which the partial-wave amplitude is a constant (i.e. in-
dependent of I). Thus (3.6) implies that, if two sets of partial-wave amplitudes f,
and f, differ by a constant

f, = f, + constant,

then the corresponding partial-wave series have the same sum (regarded, of
course, as distributions for test functions with @(1) = 0).
We can rewrite (3.5) and (3.6) explicitly using the notation (3.3) as

(3.7) So=2¢(1)=0 (for (1)=10).
We begin the main proof by showing that, when smeared with a test func-

tion ¢, the Coulomb partial-wave series is convergent. The series in question
(after smearing) is

(3.8) 2o

Now, the partial-wave amplitude is always bounded by one, |f,|<1. Mean-
while, as I-» oo the Legendre polynomials oscillate more and more rapidly,
and the integral f(pPl dx goes to zero. In fact it is easily shown that

<KQ@+1)?

(3.9) il = 21+ 1>~ f 9 (@) Pa) Ao

for some constant K, provided ¢ is in C*[—1,1]. (See, for example, ref. (°),
pp. 427-428.) It immediately follows that the series (3.8) is convergent.

(®) W. KaprraN: Advanced Caleulus (Reading, Mass., 1952).
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Having established that the smeared partial-wave series is convergent we
can now show that its limit is the smeared Coulomb amplitude

[o@f@) do.

Since ¢(1) = 0, this integral is convergent at =1 (where f(») is infinite) and
it can therefore be rewritten as

1 1—s

(3.10) f p(@) () dar = lim f o) (@) .

-~1 -1

We now note that since ¢ is in C2[—1,1] it can be expanded in a Legendre
series with coefficients @,/2:

(3.11) p(x) = %‘E%Pz(w) .

This series is uniformly convergent on [— 1,1]. Therefore, we can multiply
it by f(x) and it is still uniformly convergent on any (*) [—1,1-¢]. Thus
we can substitute the Legendre expansion (3.11) into the integral (3.10) and
interchange the sum and integral to give

(3.12) f p@f(@) do=1lim 3,7 f @) Pofa) do = lim 3 pray(e)

-1
where a,(¢) is the integral discussed in the last Section

i—e

(3.13) ae) =1 f fo) Po() das .
-1
Since we wish to prove that the expression (3.12) is equal to > ¢,f, one
might hope to prove that
(3.14) a(e)—5> f, false.
Unfortunately, this is certainly false since, as we saw in Sect. 2, the coeffi-

cients a,(¢) have no limit as ¢ — 0. However, it is easily shown (see Sect. 5)
that, although (3.14) is false, the difference a,(¢) — a,_,(¢) does have a limit

(") Tt is not uniformly convergent on [—1, 1] because f(x) blows up as x— 1.
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and in fact

(3.15) a(e) —a;_(e) >fi—fis.

If we replace I by I1—1, 1—2,...,1 in this relation and add the resulting
limits, we find that

(3.16) a,(e) — agle) >fi—f, or ale)—gle)—=> i,

e—0

where the function

g(e) = ao(e) — fo

is independent of I and bounded. That is, although a,(¢) does not approach f,,
the difference between the two does become independent of I as ¢ -~ 0. Now
we have seen that, if two sets of partial-wave amplitudes differ by an amount
independent of I, then their partial-wave series have the same sum (as distri-
butions); thus (3.16) implies the required result.

To make this last point precise we subtract from (3.12) the identity

0=g(e) E‘Pt
to give
(3.17) Jr@ra@ do=1im 3 gfaie)— ).

-1
Now we shall show in Sect. & that
(3.18) |a,(e)] < K In (I + 2) (all 7, all &).

Since g(e) is bounded and |p,) < K(I + 1)7}, the series (3.17) is uniformly con-
vergent for all &. We can therefore interchange the limit and sum to give

1

[por@as= S putim (e~ gte) = S

-1

by (3.16), as required.

In Sect. 4 we shall use this result to prove our other main result. To con-
clude this Section we remark that the convergence (as a distribution) of the
Coulomb partial-wave series to the Coulomb amplitude establishes the sense
in which the o, are the « correct » Coulomb phase shifts. The result also explains,
to a great extent, the surprising success of the many authors who have used
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the series with a cavalier disregard for its divergence in the ordinary, func-
tional, sense (see ref. (%)).

4. - The Coulomb amplitude as the limit of a screened Coulomb.

In this Section we use the result of Sect. 3 to prove our second main result.
We consider a screened Coulomb potential

(4.1) Ve(r) = l; we(r),

where the screening function «f(r) satisfies

0<a?(r)<l,
and the two conditions

1) with ¢ fixed, o®(r) >0 monotonically and is O( ™2™ as r-—>oco
(some &> 0);

2) with r fixed, of(r) -1 as g — oco.

Here the condition 1) guarantees that the screened potential Ve is a « well
behaved », short-range potential. (That «f is monotonic is a technical assump-
tion, which could be somewhat relaxed but is anyway quite harmless.) Con-
dition 2) ensures that V¢ approaches the pure Coulomb potential V = y/r
as the screening radius p tends to infinity.

Subject to these conditions, we shall show that as ¢ — co the amplitude
f(x) for the screened potential converges as a distribution to the Coulomb
amplitude f(x), times an overall phase factor. Specifically, if [(p) denotes
the real function

(4.2) to) = —fve(r) dr,
i
then we shall show that

(4.3) fé(@)

> exp [2i{(g)1f(x) (as a distribution),

o—r®

that is, for every ¢(x) in C[—1,1] with ¢(1)=0,

(4.4) fw(x)fe(m)dm a>=> eXp [2iC(0)] (@) f(x) dw.

-1 -1
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As discussed in the Introduction, this result means that the observed out-
going wave packet scattered off V¢ is indistinguishable from that computed
with the Coulomb amplitude f(x) provided g is large. This allows us to use
screened potentials to build up a theory of Coulomb scattering, and justifies
the use of the pure Coulomb amplitude in practical situations, where the
Coulomb potential is in fact always screened.

Before going on to the proof of (4.4) it is natural to enquire whether the
limit might not also hold in the ordinary (functional) sense

(4.5) fo(w) 5=o> exp [20(e)]] (@)

for each x. It turns out that this depends on the nature of the screening.
WEINBERG (1°) has proved the conjecture of DALITZ (1) that, if y is small enough
for the Born series to converge, then for the special case of exponential screening

(4.6) a®(r) = exp [—r/e]

the limit (4.5) does hold. To see that in general such a limit does not hold,
let us consider a sharp cut-off

(4.7) at(r) = 0(¢ — 1),

and suppose that y is so small that both f¢ and f are given by their Born ap-
proximations. In this case

f(z) = gﬁ and  fe(x)= (1 + cos 0V2 —2x) .

Obviously fé(z) does not approach f(x) as g —>oco. However, if it is first
smeared with the smooth function ¢(x), then the oscillatory cosine term goes
to zero as g — oo; and the two amplitudes become equal as distributions.

Obviously the fact that the limit (4.5) holds as an ordinary, functional limit
for the exponential screening (4.6) (if ¥ is small, at least) makes this particular
screening function especially important in practice. Nonetheless, for our present
purposes the more important result is that the limit (4.3) holds as a distribu-
tion for all screening functions.

The proof of (4.3) or {4.4) uses the partial-wave series for 7%(z) and f(#).
Since V¢ is O(¥ %) as r — oo, fe(x) has a partial-wave expansion

i (21 + 1)feP,(x

(1) 8. WEINBERG: Phys. Rev., 140, B 516 (1965).
(1) R. H. Darrrz: Proc. Roy. Soc., A 206, 509 (1951).
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which converges uniformly for all = (*). This can be multiplied by ¢(2) and
integrated term by term, to give for the left-hand side of (4.4)

1

(4.8) f‘P(w)f@(w)dfv: ?%ﬁ-

-1

Meanwhile, by the result of Sect. 3, the smeared amplitude on the right-hand
side of (4.4) is

1

(4.9) f (@) f(@) do = gm.

-1

Thus all we have to do is to show that these two partial-wave series are equal,
within the prescribed phase factor, as g —> co.

To evaluate the partial-wave series (4.8) we need the phase shifts 6¢ for the
screened potential Ve, These require a rather messy calculation, which we give
in Sect. 5. However, the result of this calculation can be easily understood,
as follows: we recall that the pure Coulomb potential has no phase shift in the
ordinary sense; the radial-wave functions have the asymptotic form

(4.10) sin (r —3lx+ 6, — yIn2r) + O,

which, instead of settling down to a fixed phase as r — oo, continues to pick
up phase logarithmically. Thus, if we consider the screened potential V¢,
then there is a well-defined phase shift 62 for each fixed p; but, as ¢ — oo
and V¢ goes over to the Coulomb potential, this phase shift diverges. For
example, with the sharply truncated potential given by (4.7) it is easily seen
from (4.10) that

(4.11) 8¢ =g, —yIn2p + O™,
and in general, as we shall prove in Sect. 5,

(4.12) & ==~ 0,1 £le)

for any sereening function, where ((g) is the real function defined in (4.2).
It is easily seen that the function {(p), and hence the phase shift, has no limit
as Q — Q.

(*) It is not hard to prove (by means of the bound on p. 85 of ref. (12), for example)
that if V= O(r—3-%) as r— oo then [f,| << K/I2+e.
() V. pE ALraro and T. REGGE: Potential Scattering (Amsterdam, 1965).
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Although the phase shifts 6¢ have no limit as the screening radius ¢ — oo,
the asymptotic form (4.12) allows us to prove the desired result. From (4.12)
it follows that the partial-wave amplitudes behave as follows:

. ©exp[2i6]—1 _,exp [2i(0,+ C(0))] —1
4 21 Caes 2i -

. 21 — .
— oxp(2it(e)]fo+ ZRLEOI=Y _ 0 it(o)lfi+ gt),

2¢
which again has no limit as ¢ — co. However, the important point is that,
apart from the expected overall phase, j¢ approaches the Coulomb partial-
wave amplitude, plus a term which is independent of 1 and is bounded. This is
exactly analogous to the situation in Sect. 3 (cf. eq. (3.16), where the funec-
tion g(e) as ¢ —0 is the analogue of our present g(p) as g —> oo). Thus ex-
actly the proof of Sect. 3 establishes that

2 08 5> exp [2i8(0)] X o fs -

If we insert (4.8) and (4.9), this becomes the desired result (4.4).

5. — Some proofs.
Bound on a,(¢). We have to establish the bound (3.18)
(5.1) |a(e)] < H1In (14 2).

Since each a,(¢) (with ! fixed) is bounded we can exclude the values I=10
and 1 from our discussion. We then write

(5.2) a,(e) =% { j+f }f(w)Pz(w) de,

where the value of b= b(l) is chosen (*) so that P,(x) is monotonic and pos-
itive between x=> and = 1. To see how to do this, we note that P (cosb)
is certainly monotonic and positive between 6 = 0 and its first zero 6,(!). Now
it can be shown that, as ! — oo, 6,(l) — o,/l, where g, is the first zero of the
Bessel function J,(g) (see ref. (%), p. 193). Thus, as a function of », P.,(z) has

(*) Onece b is chosen, then for certain values of ¢ we will have 1 —e < b, in which
case there is no need for the second term in (5.2). We shall see that this can only
improve matters.
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its first zero at
x (1) -1 — g}/20%,
and, if we take
b=1—¢fl*
with ¢ sufficiently small, then P,(z) is monotonic and positive for b<e<1.

This lets us apply the second mean-value theorem (*) to the second term
in (5.2) to give

- (P:(l ) ff(w)da:
&

< constant (some §).

(5.3) { f H(@) P) A

Meanwhile the first term in (5.2) satisfies

(5.4) j ff(x)Pz(m)dx <f|f(w)|dw= o f do)(1 —2) =

= |y|In(2/(1 —b)) = |y|In (21%/¢) < constant XInl.

Combining (5.3) and (5.4) in (5.2) and choosing K appropriately we obtain the
desired result (5.1).

Behaviour of a,(¢) as ¢ —0. We wish to prove the result (3.15) that
as ¢ —0

a(e) —aiq(e) > f,—fi,.
From the definition (3.13) of the a,(e)

i1—e

a(e) — aii(e) = } f fa)(Py@) — P,_y(x)) de.

This integral has a well-defined limit as & — 0, because the singularity of f(z)
at z=1 is cancelled by the vanishing of P,— P,_,. Thus

ay(e) —a;_4(e) 9% f,’f(P,——P,_l)dw: g—/ f(l——w)_l"'y(P,——P,_l)dav.

(*) See, for example, WHITTAKER and WaTsoN (13), p. 66.
(1%) E.T. WaitTaker and G. N. Warson: Modern Analysis (Cambridge, 1962).

22 ~ Il Nuovo Cimenio B.
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This integral is easily evaluated with the help of standard integral tables. For
example, GRADSHTEYN and RyzHIK (14), p. 797, give the integral of (1 — x)° P,
(which is convergent for Reo > — 1). From this we can write down the in-
tegral of (1 — x)°(P,— P,_;) and then continue analytically to o= —1—iy.
The result is

a(e)—a,_(e) —

iF(l—{—iy)]l—{—i‘y__l —S’—s"lzf_f
20 I'(1—1y) |1 —iy T2 r e
as required.

Phase shifts for the screemed potential. We wish to prove the result (4.12)
that, if ¢ is the phase shift for the screened potential V¢, then as the screening
radins ¢ — oo

(5.5) 8¢ —> g, + L(o),

where

2o = — [ Ve ar.
t

Since we are interested here in a single value of the angular momentum I,
we shall suppress that variable in what follows.

To prove (5.5) we use Calogero’s variable-phase method (*5). We define
the phase function 6(r), for any potential V, to be the phase shift obtained if V
is truncated at radius r. Clearly §(0) =0, and &(oco0) =4, the actual phase
shift for the potential V itself. The phase function for any r is then determined
by the phase equation

%—f_ (r)=—2V(r)(sin 6(r) A(r) + cos 6(r) f(r))z,

where 7 and j are the Riccati-Neumann and Bessel funections in the notation
of ref. (). Replacing these by their asymptotic forms, we get

J
(5.6) % (r)=—2V(r){sin?(r 4+ 3 ln + 8(r)) + O(r ")} =

= —2V(r)(sin?z+ O(r)),
where

(5.7) x=r-+ Lln+ o(r).

(**) I. 8. GraDSHTEYN and I. M. Ryzuik: Tables of Integrals, Series and Products
(New York, N.Y., 1965).

(**) F. CavoGERO: The Variable Phase Approach to Potential Secatiering (New York,
N.Y., 1967).



A NEW RIGOROUS APPROACH TO COULOMB SCATTERING 331

We can now apply this method to the screened potential
ve(r) =Lootr),

where the screening function o?(r) satisfies the conditions discussed at the
beginning of Sect. 4. If we integrate (5.6) from any fixed R 10 oo, we obtain

(5.8) 8¢ — 8°(R) — 2[179(7«) sin*zdr 4+ O(RY) .

The term sin?z in the integrand depends in a complicated way on the phase
function 68(r)—see (5.7) above. However it turns out that in the present case
the phase function varies so slowly that we can replace the term sinz by
its average value 1. To see this we write 2 sin?z as 1 — cos22 and examine
the integral

(5.9) fVQ(r) cos2xdr.
B

Since dde?/dr is O(r~1), it is clear from (5.7) that z is a strictly increasing func-
tion of r (for r sufficiently large) and vice versa. We can then change variables
from » to # and V¢ is a monotonic function of x. This allows us to apply the
second mean-value theorem, and a brief calculation then shows that the in-
tegral (5.9) is O(R'). We can therefore rewrite (5.8) as

(5.10) 80 — 8¢(R) — f Ve(r)dr 4 O(R-1) .

The reader can easily check that this estimate is uniform for all p.

The result (5.10) shows that, to order R-!, the contribution to ¢ from
radii # > R is independent of [ and has the advertised dependence on the po-
tential. It remains to show that the contribution from radii » < E is related
to the Coulomb phase shifts in the way specified. To this end we recall that on
any fixed interval 0 << » < R the screened potential approaches the pure Coulomb
potential as g — oo; 10 be presise

and as p — oo
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uniformly on [0, R]. It is fairly obvious, and easily shown, that under these
conditions the phase function §¢(R) goes over to the pure Coulomb phase function

(5.11) 0°(R) > 6% R) (any fixed R).

e—>®

Now the pure Coulomb phage function has already been given in (4.11) and,
in our present notation, Is

(5.12) 0%“(R) = o6 — y In2R + O(R™).

Our proof is now almost complete. We can first choose R so large that the
terms O(E-!) in (5.10) and (5.12) are both less than any desired small amount.
Having chosen E, we can find g, such that the two sides of (5.11) differ by less
than the same small amount for all g>g,. This establishes that

(5.13) 0e——>cg—yIn2R—| Ve(r)dr
e

R

Finally, we note that as ¢ - co
fve(r) dr >y In2R.

Thus, the last two terms in (5.13) can be combined as fV" )dr, and we have
the desired result.

Nonexistence of a partial-wave series for f(x). The argument given in Sect. 2
shows that the Coulomb amplitude can never be expanded in a series

(5.14) flw) =3 (214 1)a, P (x)

which is uniformly convergent. There remains the possibility that there could
be an expansion of this form which is not uniformly convergent. We can ex-
clude this as follows.

Suppose that the series (5.14) is convergent for —1<w<<1. (At x=1 it
will presumably diverge, but this makes no difference.) We can multiply this
series by (1 — x)* to give

(1 — x)2f §:2l—}—1 a, (1 — 2)2 Py(z),

which is convergent for —1<wx<1. Using the recursion relations for the
Legendre polynomials we can write (1 —)*P, as a linear combination of
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P, 4 ..., P, and hence obtain a series
(5.15) (A — )2 f(x) = > (214 1)b, P () (—l<w<l),
(1]

where each coefficient b, is a certain linear combination of the a,. Obviously
if the a, were known we could immediately determine the b;; conversely, it is
easily checked that if the b, were known we could calculate all of the a,, apart
from two undetermined constants.

Now, the function (1 — z)2f(x) on the left-hand side of (5.15) is a well-
behaved function which has a normal Legendre expansion

(5.16) (1 —2)%f(@) = 3 (20 + 1) 0, Py(2) (—1<z<l),

where the coefficients ¢, are given by the usual formula

(5.17) ¢ = % f(l — %)} (2) Py(x) dw = % f(1 — @) Py(z)dx.

-1

This integral is easily evaluated (see ref.(!4), p. 797).

The expansions (5.15) and (5.16) are expansions of the same funetion, both
convergent for —1<x<1. It follows (*) that the coefficients b, are the same
as the ¢;, which we have just seen can be calculated from (5.17). Once we know
the b, we can, as discussed above, determine the original @, apart from two
constants. The result of this (quite lengthy) calculation is

(5.18) a=fi+ A+ Bli(l+1),

where f, is the Coulomb partial-wave amplitude and A and B are undetermined
constants.

Since the series (5.14) is convergent (by hypothesis) it is clear that the
constant B in (5.18) is zero. Thus we have established the following result:
If the expansion (5.14) converges pointwise for all #s£ 1, then the expansion
coefficients a, must be

a,="f+4.

But from the properties of f, established in Sect. 2, it is clear that, with

() This is actually a rather subtle point. The result we are using is that if
za,P,(w) =0 for —1<x<1, then «;— 0 (even when the series is not necessary uni-
formly convergent). I have been unable to find this result in the literature and am much
indebted to Prof. J. CLUNIE of Imperial College for kindly showing me how to prove it.
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a, = [, 4+ A, the series (5.14) is not convergent (whatever we take for A). This
is the desired contradiction.

% % ok

It is a pleasure to acknowledge the help of several friends and colleagues.
The main ideas of this paper were discussed at length with D. GOODMANSON.
Several proofs were much simplified with the help of E. CAMPESINO-ROMEO
and M. SEMON. And the theorem quoted the footnote at the end of Sect. 5
was shown to me by Prof. J. CLUNIE.

Note added in proofs.

In a recent paper (1) PRuGOVECKI and ZorBaAS have established a connection
between screened and unscreened Coulomb amplitudes, similar to that described in
Sect. 4. While our method of proof is more elementary than theirs, their method is
in most respects much more general.

(%) E. PruGgovEckI and J. ZorBAS: Nucl. Phys., 213 A, 541 (1973).

® RIASSUNTO (%

Con questo lavoro si stabiliscono due proprieta dello scattering non relativistico di
Coulomb. La prima & che, se considerata come distribuzione, la serie delle onde parziali
di Coulomb & convergente (sebbene sia divergente come funzione) e converge all’ampiezza
di Coulomb. La seconda proprietd, la cui dimostrazione si avvale della prima, ¢ che
lampiezza di ogni potenziale di Coulomb schermato converge come distribuzione
all’ampiezza di Coulomb (moltiplicata per un fattore di fase onnicomprensivo) quando
il raggio di schermatura tende all’infinito. Si deduce che questa seconda proprietd
puo essere posta alla base di una sucecinta ma rigorosa teoria dello scattering di Coulomb.

(") Traducione a cura della Redazione.

Hosprlit cTporuii noaxoa K KYJOHOBCKOMY PACCEAHHIO.

Pesrome (*). — B 3TOil cTaThe YCTAHABIMBAIOTCA JABA CBOWCTBA HEPEIATHBHCTCKOTO
KYIIOHOBCKOro paccesHusi. IlepBoe CBOMCTBO COCTOMT B TOM, MTO KYHOHOBCKHIA psif IO
MApLUAIbHBIM BOJIHAM SIBIISIETCS CXOISAIIMMCS M CXOLHUTCS K KyJIOHOBCKOM aMIUIMTYHE.
B cooTBeTcTBHM CO BTOPHIM CBOMCTBOM, aMIUMMTyJda [Jis JIFOGOTO 3KPaHHPOBAHHOTO
KYJIOHOBCKOTO MOTEHIMANTA CXOTUTCH, KOTAA paauyc IKpaHHPOBAaHUsI CTPEMHTCI K GeCKo-
HEYHOCTH. VYKa3bIBAeTCH, YTO 5TO BTOPOE CBOMCTBO MOXET OBITh HCHOJIB3OBAHO, Kak
Gaszuc A5l 9KOHOMHOM, HO CTPOroif TeOpHUH KyIIOHOBCKOTO PACCEsHHS.

(™) Iepesedeno pedaryueil.



