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Summary .  - -  T h i s  paper  establishes two proper t ies  of nonrela t iv is t ie  
Coulomb scattering.  The first is tha t ,  when considered as a dis t r ibut ion,  
the Coulomb par t ia l -wave series is convergent (even though divergent  
as a function) and eonverges to the  Coulomb ampli tude.  The second 
proper ty ,  the  proof  of which uses the first, is tha t  the  ampl i tude  for any  
screened Coulomb potent ia l  converges as a d is t r ibut ion  to the  Coulomb 
ampl i tude  (times an overall phase factor) when the  screening radius  
tends to infinity. I t  is argued tha t  th is  second p rope r ty  can be made 
the basis of an economical but  r igorous theory  of Coulomb scattering.  

1. - I n t r o d u c t i o n .  

One  of t h e  m o s t  f a m o u s  a n d  f r u s t r a t i n g  a n o m a l i e s  in  s c a t t e r i n g  t h e o r y  is 

C o u l o m b  s c a t t e r i n g .  B e c a u s e  t h e  C o u l o m b  p o t e n t i a l  

V(r) =~ 

fal ls  off so s lowly  w h e n  r -+ c~,  a l m o s t  n o n e  of t h e  s t a n d a r d  r e su l t s  of o r d i n a r y  

n o n r e l a t i v i s t i c  s c a t t e r i n g  can  b e  a p p l i e d  in  t h e  case  of C o u l o m b  s c a t t e r i n g .  

To m e n t i o n  j u s t  f ou r  such  resu l t s ,  we r e m i n d  t h e  r e a d e r  t h a t  1) t h e  a s y m p t o t i c  

(*) Permanent  address.  Work  suppor ted  by a FacuLty Fellowship from the  Univer-  
s i ty  of Colorado. 
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cond i t i on - - the  cornerstone of convent ional  sca t te r ing  t h e o r y - -  is not  satisfied 
when Coulomb forces are p resen t ;  2) wi th  a Coulomb potent ia l ,  the  s t anda rd  
definitions of the  scat ter ing ampl i tude  and phase  shifts  are meaningless ;  
3) the  Coulomb par t ia l -wave  series is d ivergent ;  4) the  ampl i tude  for a screened 
Coulomb poten t ia l  has no l imit  when the  screening radius  goes to infinity.  

One way  of avoiding some of the  difficulties has been  to b roaden  the  no rma l  
f r amework  of scat ter ing theo ry  so as to include the  anomalous  case of the  
Coulomb potent ial .  This approach  has been pur sued  b y  DOLLARD (1) and  b y  
-AJVIREISr, MAI~TI>; and MISRA (3), who have  been able to replace the  usual  
a sympto t i c  condit ion with a weaker ,  more  general  condi t ion t h a t  is satisfied 
b y  the  Coulomb potent ia l .  Since the i r  generalized a s y m p t o t i c  condit ion is 
still s t rong enough to describe the  essential  observed fea tures  of sca t te r ing  
exper iments ,  their  work  provides  a r igorous and  phys ica l ly  sa t i s fac tory  basis  
for a theory  t h a t  can handle p rob lems  involving Coulomb forces. 

lqevertheless, one cannot  help feeling t h a t  t he  labour  of cons t ruc t ing  the  
theory  of ])OLLARD et al. is, in a cer ta in  sense, unnecessary.  This feel ingis  based 
on the fact  t h a t  in pract ice  Coulomb potent ia ls  are a lways  screened. (For 
example,  the  Coulomb potent ia l  of a nucleus is screened b y  the  a tomic  electrons~ 
and even in the  best  avai lable  v a c u u m  the poten t ia l  of an isolated charge would 
be screened by  polar iza t ion of the  residual  particles.)  This fac t  suggests t h a t  
one ought  to be able to build a t h e o r y  of Coulomb sca t te r ing  which discusses 
only screened Coulomb potent ials .  Since these screened poten t ia l s  are (~ well 
behaved  ~> shor t - range potentials ,  no extension of the  convent iona l  (short-range) 
theory  would be needed. 

In  this paper  I propose a t heo ry  of Coulomb sca t ter ing  on these lines. The 
theory  is based on two main  results,  which are as follows. 

The first result  concerns the  Coulomb par t i a l -wave  series. I t  has long been 
known (see ref. (3)) t h a t  the  pa r t i a l -wave  series cons t ruc ted  f rom the Coulomb 
par t ia l -wave  ampl i tude  is d ivergent ,  and  conversely  t h a t  the  full Coulomb 
ampl i tude  has no par t ia l -wave  expansion.  (We review bo th  of these  disagreeable  
results in Sect. 2.) However ,  I shall  p rove  in Sect. 3 t ha t ,  when  considered as a 

distribution,  the  Coulomb par t i a l -wave  series is convergent  and  t h a t  its l imi t  
(as a distr ibution) is precisely the  full Coulomb ampl i tude .  More explici t ly,  
if we mul t ip ly  the  par t i a l -wave  series b y  any  su i tab ly  smooth  funct ion  (*) 
~(0) and in tegra te  over  all angles, t h e n  the  result ing series is convergent ,  and  

(1) J. D. DOLLARD: Journ. Math. Phys. ,  3, 729 (1964). 
(~) W. O. AMREIN, P. A. MA~TI~ and B. M~szA: Helv. Phys.  Acta, 43, 313 (1970). 
(3) L. MARQUEZ: Am.  Journ. Phys. ,  40, 1420 (1972). 
(*) As discussed in Sect. 3, we shall require that ~o vanish in the direction 0 = 0 
and that, as a function of cos 0, it be twice differentiablc with continuous second 
derivative. 
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its sum is precisely the  in tegral  of ~(0) t imes the  full Coulomb ampl i tude  (*). 
I t  should pe rhaps  be  emphas ized  t h a t  this  r e s u l t - - t h a t  the  Coulomb par t ia l -  

wave  series is equal  to the  Coulomb ampl i tude  p rov ided  bo th  are mul t ip l ied  
b y  ~v(0) and in tegra ted  f i r s t - - i s  ent i re ly  na tu ra l  and  sa t is fac tory .  The point  
is t h a t  in any  real  exper iment  one does not  observe  the  ampl i tude  itself, b u t  
r a the r  the  in tegral  of the  ampl i tude  t imes  some smoo th  ~(0). :For example ,  
in the  scat ter ing of a single par t ic le  off a fixed potent ia l ,  the  initial  s ta te  of a n y  
exper iment  is character ized b y  some wave  packe t  qt=(P); and  the  q u a n t i t y  
t h a t  is observed is the  corresponding outgoing packe t  

f <pIsIp'> w,.(p') fd ' i(p 

where <plSlp'} denotes the  m o m e n t u m - s p a c e  S -ma t r i x  e lement  and  ]{p+--p') 
the  corresponding scat ter ing ampl i tude  (all in the  no ta t ion  of ref. (5}). The  
mos t  t h a t  can be m e a s u r e d - - e v e n  in principle, and  in prac t ice  we measu re  
much  less-- is  this integral  involving the  ampl i tude  t imes  the  ingoing wave  
funct ion;  t h a t  is, we do not  observe the  ampl i tude  itself, bu t  only  the  ampli-  
tude  (~ smeared ~> by  some sui table  t es t  function.  This means  t h a t  our resul t  
- - conve rgence  of the  smeared  pa r t i a l -wave  series to  the  smeared  a m p l i t u d e - -  
is exac t ly  what  is wanted  for discussion of real  m e a s u r e m e n t s  (**). 

The second main  result ,  whose proof  uses the  first, concerns the  possibi l i ty  

of replacing the  Coulomb po ten t i a l  

(1.1) V(r) = 7/r 

b y  a screened Coulomb potent ia l ,  in the  l imit  t h a t  the  screening radius  is m a d e  
large. The precise na ture  of the  screening is u n i m p o r t a n t ;  for example ,  we 
could consider an exponent ia l ly  screened poten t ia l  

{1.2) VQ(r) : ~ exp  [ - -  r/~] , 

(*) That some such result must hold has been suggested by several authors. In par- 
ticular, HOLDEMAN and TUALER (a) have stated precisely our result, that  the Coulomb 
partial-wave series converges as a distribution to the Coulomb amplitude. However, 
they make no attempt to justify the assertion (concentrating instead on showing that  
the coefficients in a (( formal )> Legendre expansion of the Coulomb amplitude can be 
given a meaning) and there appears to be no published proof of the result. 
(4) J. T. HOLDEMAN and R. M. THALER: Phys. Rev., 139, B 1186 {1965). 
(5) J. R. TAYLO~: Scattering Theory (New York, N.Y. ,  1972). 
(**) In the case of short-range potentials, it is of course very useful that  the partiM- 
wave series converges to the amplitude as a ]unction, without any smearing. Nonetheless, 
only the weaker result (convergence as a distribution} is really needed; and in Coulomb 
scattering only the weaker result holds. 
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or a sharply t runca ted  potential  

(1.3) 
7 

Vq(r) = r O(@--r) ' 

where O(x) is the step function 

O ( x ) = o  ( x < 0 ) ,  

= 1  ( x >  0),  

or, quite generally, 

(1.4) V~(r) = ~ ~Q(r) , 

where the screening function a~ tends to zero as r--> c~ (with @ fixed) bu t  
approaches ] as the screening radius @--> co (with r fixed)(*). 

The mot ivat ion for considering such potentials has a l ready been ment ioned 

briefly: First, the screened potential  V q is a short-range potent ial  and so 
(unlike the Coulomb potential) it satisfies all of the basic assumptions of ord inary  

scattering theory;  second, one would certainly expect the  observable properties 
of V Q to approach those of the Coulomb potent ia l  V as @ -+ oo. These ideas 
are not  new. In  fact they  are almost as old as scat ter ing theory  i t se l f - -da t ing  

back at least to Gordon's  classic paper on Coulomb scat ter ing (6)--and have  
been stated explicitly by  GOLDBERGER and WATSO~ (ref. (7), pp. 259-269), 

for example. Nonetheless, there appears to have been no clear s t a t emen t  
(much less a proof) of the sense in which the properties of V Q go over to those 
of V as @--~ co. The two main difficulties have always been, first, t h a t  as a 

]unction the ampli tude for V ~ does not (in general) approach the Coulomb 
ampli tude (**), and, second, tha t  the simplest way  to approach  the problem 

is by  means of the part ial-wave series, which in the Coulomb case is unfor- 
tuna te ly  divergent. 

The result which I shall prove in Sect. 4 is t ha t  as a distribution the  ampli- 
tude  for the screened potential  Vq does converge to the  Coulomb ampl i tude ,  

times an overall phase factor. This means tha t  the physical ly  observable prop- 

(*) Our precise assumptions about the function aq(r) are given in Sect. 4. 
(6) W. GORDON: Zeits. Phys., 48, 180 (1928). 
(7) M.L. GOLDBERG]m and K. M. W~TSON: Collision Theory (New York, N. Y., 1964). 
(**) As we shall discuss in Sect. 4, there may be certain screening functions for which 
the screened amplitude does converge to the Coulomb amplitude, at least within an 
overall phase factor. For example, this is apparently true for the exponential screen- 
ing (1.2), at least if y is small. Nonetheless, this is certainly not true for all screening 
functions. 
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erties of V ~ become independen t  of ~ as Q becomes large, and  t h a t  in the  l imit  
t hey  coincide precisely wi th  the  corresponding Coulomb quanti t ies .  

This result  is the  essential  founda t ion  of the  a l t e rna t ive  t r e a t m e n t  of Coulomb 
scat ter ing ment ioned  at  the  beginning of this In t roduc t ion .  This t r e a t m e n t  
would begin wi th  the  observa t ion  t h a t  in p rac t i ce  the  po ten t ia l  of a n y  point  
charge is a lways screened; t h a t  is, the  ac tua l  po ten t ia l  in a n y  real  Coulomb- 
scat ter ing exper iment  is no t  the  pure  Coulomb (1.1) bu t  is a screened Coulomb 
of the  t y p e  (1.4). Since this po ten t ia l  is of shor t  range  all of the  s t anda rd  resul ts  
of scat ter ing theory  hold good. The  whole sca t te r ing  process can therefore  be 
sat isfactori ly described and the  var ious sca t te r ing  probabi l i t ies  c o m p u t e d  
within the  normal  theoret ical  f ramework .  H a v i n g  carried th rough  this whole 
p rogramme,  we would then  appea l  to our resul t  to gua ran tee  t h a t  eve ry th ing  
obta ined  in this way  is ac tual ly  independent  of the  exac t  na tu re  of the  screening 
and of the  precise value of the  screening radius  ~, p rovided  only  t h a t  Q is large;  
and t h a t  the  results  coincide wi th  wha t  one would ob ta in  using the  pure  Coulomb 
ampli tude.  

To summar ise  briefly: Our  results  es tabl ish t h a t  Coulomb-sca t te r ing  ex- 
per iments  can be consis tent ly  described wi th in  the  f r a m e w o r k  of convent iona l  
scat ter ing theo ry  by  the  use of screened Coulomb potent ials ,  and t h a t  the  
result ing predict ions are independent  of the  na tu re  and  radius Q of the  screening, 
provided 9 is large. Fur ther ,  t hey  just i fy  the  use of the  pure  Coulomb ampli-  
tude  in si tuat ions where the  Coulomb po ten t ia l  is in fact  a lways screened. 

2. - D ivergence  o f  the  Coulomb p a r t i a l - w a v e  ser ies  as  a f u n c t i o n .  

In  this Section we introduce the  necessary nota t ions ,  and review the  reasons 
for the  divergence of the  Coulomb pa r t i a l -wave  series. 

We shall discuss the  scat ter ing of a spinless part icle  wi th  charge el and  
mass m off a fixed ta rge t  of charge e2. The po ten t i a l  is therefore  

(2.1) V ( r )  = ele2/r  - -  y / r .  

We use units  wi th  ~ ~--m ~ I and,  since we shall  only be  concerned wi th  
single fixed energy, we shall also set the  incident  m o m e n t u m  p = 1. We  sh~ll 
th roughou t  use the  abbrev ia t ion  

x ~ cos 0 

where 0 is the  usual  sca t ter ing angle. 
I t  is a notorious fact  t h a t  in Coulomb sca t te r ing  one cannot  define e i ther  

a phase  shift or a scat ter ing ampl i tude,  in the  ord inary  sense. 1~onetheless, 
it is usual to in t roduce what  are called the  Coulomb phase  shifts and  Coulomb 
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amplitude, which are defined as follows: 

(2.2) at ~- Coulomb phase shift = a rgF( l  ~- 1 ~- iy) 

and 

(2.3) ](x) = Coulomb ampl i tude  = - -  7 exp [2iao] exp [ - -  i~ In sin g (0/2)] = 
2 sin g (0/2) 

i~ln (l--x)] 
= 7'  e x p [ - - l _  x = ? ' ( l - - x )  -1-~  , 

where x = cos0 as usual and 

F ' ~  --  ~ exp [2iao] exp [iy l n 2 ] .  

I n  terms of the Coulomb phase shifts at, one defines a Coulomb part ia l-wave 
ampli tude in the usual way :  

/ , =  e x p [ 2 i a t ] - - I  _ s , - - 1  
2i 2i ' 

where 

F(1 + 1 + i~) 
s~ = exp [2ia~] = F(1 -t- 1 -- i~) 

is called the Coulomb part ial-wave S-matrix.  While none of these quanti t ies  
have their conventional  significance (in terms of asympto t i c  forms of wave 

functions, for example), it is t rue tha t  the experimental ly  observed Ruthe r fo rd  
cross-section is correctly given by  the  usual formula 

da y* 
d..e - -  I ] ( x ) l ~ - -  4 sin* (0/2) 

Before proceeding to the main results of this paper,  I would like to recall 
two impor tan t  facts. First, if one defines a Coulomb part ial-wave series 

(2.4) ~.(21+l)]zPt(x)  divergen t ,  
0 

then this series is divergent;  and second, it is impossible to expand the full 

Coulomb ampli tude in a Legendre series of the type  

(2.5) I(x) -~ ~(21 ~- 1)a,Pz(x) false.  
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To see t h a t  the  par t i a l -wave  series (2.4) is d ivergent  we note,  f rom thei r  
definition (2.2), t h a t  the  phase  shifts at sat isfy 

at = at-1 q- a rc tg  (y/l) ~ a~_l q- y/1.  

Thus as 1-->0% the phase  shifts do not  go to zero; ins tead t hey  increase 
wi thout  l imit  like In 1. This means  t h a t  the  pa r t i a l -wave  ampl i tudes  do not  
t end  to zero, bu t  move  indefinitely a round  the  un i t a ry  circle, approach ing  
their  m a x i m u m  value (when ]~ ~ i) a t  regular  intervals .  Since 

P ~ ( •  1) = ( ~  1)~, 

it is immedia t e ly  clear t h a t  the  pa r t i a l -wave  series (2.4) is d ivergent  in the  for- 
ward and backward  directions. To find out  wha t  happens  a t  o ther  angles 
we need Laplace ' s  formula  (see, for example ,  ref. (8), p. 193) 

((:) (2.6) P~(eos 0) = ~sisin-O cos 1 q- 0 - -  q- O(l-~),  

which holds uni formly  on a n y  in te rva l  

--  1 + e < c o s O < l - -  e 

(e > 0) as l -+  oo. The decrease, like 1-�89 of the  Legendre  polynomials  is c lear ly 
swamped b y  the  fac tor  21 q -1  in the  pa r t i a l -wave  series, the  t e rms  of the  
series oscillate under  an envelope p ropor t iona l  to 1�89 and  the  series diverges.  

We r e m a r k  t h a t  the  divergence of the  Coulomb pa r t i a l -wave  series in t he  
forward direction (0 ~ 0) is cer ta in ly  to be  expected ,  since the  Coulomb am-  
pl i tude is itself infinite a t  0 = 0. However ,  the  divergence for 0 :/= 0 is per-  
haps  unexpec ted  and cer ta in ly  a nuisance, since when  0 ~: 0 the  Coulomb 
ampl i tude  and cross-section are finite and  comple te ly  well behaved.  I n  par -  
t icular,  since the  par t ia l -wave  series cons t ruc ted  wi th  the  phase  shifts az is 
divergent,  it becomes a l i t t le obscure why  the  at should be called (( Coulomb 
phase  shifts ~) a t  all. 

To see t h a t  the  full Coulomb ampl i tude  f(x) cannot  have  any  pa r t i a l -wave  
expansion of the  t y p e  (2.5), let  us assume t h a t  such an  expansion is possible.  
To simplify the  a rgumen t  we shall  suppose t h a t  the  expans ion  is un i fo rmly  
convergent ,  in which case we shall ar r ive  a t  an  immed ia t e  contradict ion.  This  
a rgumen t  will leave open the  re la t ively  exotic possibi l i ty t h a t  an expans ion  
like (2.5) exists bu t  is not  un i formly  convergent ;  the  proof  t h a t  this too is 
impossible is more  complicated and will be given later ,  a t  the  end of Sect. 5. 

(s) G. SzEGo: Orthogonal Polynomials (New York, N.Y.,  1959). 
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I f  we assume t h a t  the  expans ion  (2.5) is un i fo rmly  convergent  for  all x, 
t hen  it  follows t h a t  the  expansion coefficients are given b y  the  fami l ia r  f o rmu la  

(2.7) 
1 

a~ ~- �89 f /(x)Pz(x) dx .  
- - I  

The in tegrand ](x)Pz(x) is cont inuous  and  bounded  on a n y  sub in te rva l  
[ - -1 ,  1 - - e l ;  thus  the  in tegral  

(2.8) 
1--$ 

al(e) : l f /(x)P,(x) dx 
- -1  

cer ta inly  exists for any  e > 0. U n f o r t u n a t e l y  the  s ingular i ty  of ](x) a t  x-----1 
means  t h a t  this integral  has no l imit  as e--> 0. To p rove  this it  is sufficient 
to  consider the  case l =  0 (since all of the  P~ approach  1 a t  x----1) 

1--e I - -$  

ao(s) ~- �89 f / ( x )  dx : (y'/2) f exp [--  iy ln(1  --  
--1 --1 

x)] dx/(1 - -  x) = 

--lne 

---- (~//2) f exp [iy~] d~.  
- - ln2  

As e - +  0, the  upper  l imit  tends to infini ty and  the  in tegra l  oscillates wi thou t  
limit. (For  fu ture  reference, we note,  however ,  t h a t  a~(~) does r emain  bounded 
aS ~ --> 0.) 

Since az(~) has no l imit  as e --> O, it  follows t h a t  the  original in tegral  (2.7) 
for a~ cannot  exist, and  we have  the  desired contradic t ion.  

3.  - Convergence  o f  the  Cou lomb p a r t i a l - w a v e  ser ies  as  a d is tr ibut ion .  

We shall now show tha t ,  even  t hough  the  Coulomb pa r t i a l -wave  series is 
d ivergent  as a function,  i t  is nonetheless convergent  as a dis t r ibut ion,  and  t h a t  
its l imit  is the  full Coulomb ampl i tude .  We  shall wri te  this resul t  as 

(3.1) • ( 2 /  + 1) 1~ P,(x) ~-- ](x) (as a dis tr ibut ion)  
0 

to emphasize  t h a t  the  l imit  is in the  sense of dis tr ibut ions.  This means  t ha t ,  
if we mul t ip ly  bo th  sides b y  a su i tab ly  smooth  tes t  funct ion  ~(x) and  in teg ra te  
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f rom - - 1  to 1, then  the  resul t ing two numbers  are equal:  

1 1 

--1 --1 

I t  is convenient  to  in t roduce  the  no ta t ion  

(3.3) 

1 

(2l-4 1) f w(x)P,<x) dx, 

in t e rms  of which the  desired resul t  becomes 

1 

o f (3.4) ~o q~,[,= q~(x)l(x) dx .  
- - 1  

Natura l ly  we expect  this result  to hold only when ~v(x) is in some space  of  
(~ reasonable ~) functions.  Firs t ly,  ~ m u s t  cer ta in ly  be  a smooth  funct ion.  I n  th is  
connection it would seem quite reasonable  to require  ~ to be infinitely differ- 
entiable. However ,  i t  proves  sufficient for our purposes  to require only t h a t  ~o 
be twice differentiable,  with a cont inuous second der ivat ive ,  on the  closed 
in terva l  [ - - 1 , 1 ]  We denote  the  space of all such funct ions b y  C2[--1,  1], 
and shall insist f rom now on t h a t  ~ belong to this  space. 

Secondly, we m u s t  require t h a t  ~0(x) vanish  a t  x--~ 1, t h a t  is a t  0 = 0. 
1 

Mathemat ica l ly ,  this requ i rement  is m a d e  to ensure t h a t  the  integral  fq~fdx 
--1 

exists, inspire of the  s ingular i ty  of ] a t  x ~--1. Physical ly ,  the  r equ i r emen t  
corresponds to  the  well-known fac t  t h a t  in Coulomb scat ter ing it is imposs ible  
to  measure  a meaningful  forward  cross-section. 

Accordingly,  wha t  we shall p rove  is t h a t  (3.4) holds for  all ~(x) sa t i s fy ing  

~ C2[ - 1, 1] and  ~(1) -~ 0 .  

Before we p rove  this  resul t  we recall  the  i m p o r t a n t  re la t ion (*) 

(3.5) (2/-F 1) P~(x) -~ 2(5(1 - -  x) (as a dis t r ibut ion)  . 

This is a special case of the  famil iar  completeness  relat ion 

(2I-F 1)P~(x)Pz(y) = 2O(x--  y) (as a dis t r ibut ion)  

1 
(*) In this relation the meaning of 6(l--w) is that  S~0(x) 6(1-- x) dx -- 9(1). 

--1 
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whose proof can be found in the  s tandard  tex ts  (e.g. ref. (9), pp. 425-429), 
and certainly holds for all tes t  funct ions in C~[ - 1, 1]. In  part icular ,  we are 
interested in tes t  functions ~ which vanish at  x---- 1. For  such functions,  the  
del ta-funct ion on the  r ight-hand side of (3.5) produces ~(:l)--~ 0. Thus  we 
can write 

(3.6) (21 + 1)P~(x) = o (as a dis tr ibut ion for tes t  
functions with ~(1)----0). 

The  significance of (3.6) can be seen if we note  tha t  the  series on the  left  is a 
part ial-wave series in which the  par t ia l -wave ampl i tude  is a cons tant  (i.e. in- 
dependent  of 1). Thus (3.6) implies tha t ,  if two sets of par t ia l -wave ampli tudes ]~ 

! 

and  ]z differ by  a constant  

t 
]9 =-/~ ~ cons tan t ,  

then  the corresponding part ial-wave series have the same sum (regarded, of 
course, as distributions for tes t  functions with of ( l )=-0) .  

We can rewrite (3.5) and (3.6) explicit ly using the nota t ion  (3.3) as 

(3.7) ~q~  =- 2 ~ ( 1 ) =  0 (for ~(1) = 0 ) .  

We begin the  main proof by  showing tha t ,  when smeared with a tes t  func- 
t ion ~, the Coulomb part ial-wave series is convergent.  The series in quest ion 
(after smearing) is 

co 

(3.8) ~ ~,/ , .  
o 

:Now, the part ial-wave ampli tude is always bounded by  one, []~[<1. Mean- 
while, as 1-~ c~ the Legendre polynomials oscillate more  and more rapidly,  
and the integral f~P, dx goes to zero. In  fac t  it is easily shown t h a t  

1 

(3.9) I~l = (2/~- 1) f q~(x)_P~(x) dx • K(l -~ 1)-t 
- - 1  

for some constant  K,  provided q is in C2[-- 1, 1]. (See, for  example,  ref. (9), 
pp. 427-428.) I t  immediate ly  follows t ha t  the  series (3.8) is convergent.  

(9) W. K-~PLAN: Advanced Calculus (Reading, Mass., 1952). 
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H~ving established tha t  the smeared par t ia l -wave series is convergent  we 
can now show tha t  its limit is the  smeared Coulomb ampl i tude  

1 

fop(x) ](x) dx . 
- -1  

Since ~ ( 1 ) - -  0, this integral  is convergent  a t  x---- 1 (where ](x) is infinite) ~nd 
i t  can therefore be rewri t ten  as 

(3.~0) 
1 1--8 

We now note  t ha t  since ~ is in C2[ - 1, 1] i t  can be expanded  in a Legendre  
series with coefficients ~ / 2 :  

(3.11) ~(x)  = 1 ~ : ~ , ~ , ( x ) .  
o 

This series is uniformly convergent  on [ - -1 ,  1]. Therefore,  we can mul t ip ly  
it by  /(x) and it is still uniformly convergent  on any  (*) [ - -1 ,  1 -  e]. Thus  
we cnn subst i tute  the Legendre expansion (3.11) into the  integral  (3.10) and 
interchange the sum and integral  to give 

(3.12) (x)J(x)dm= l i m ~  ( x l P z ( x ) d x ~  l ira <p~az(e), 
e---~O 0 ~ ' ~  

where a~(~) is the integral discussed in the  last Section 

(3.13) as(s) : �89 f ](x)P~(x)dx. 
- -1  

Since we wish to prove t ha t  the expression (3.12) is equal  to ~ ] ~  one 
might  hope to prove  t ha t  

(3.14) a~(a) ~ ~_~* f~ false .  

Unfor tunate ly ,  this is certainly false since, as we saw in Sect. 2, the  coeffi- 
cients as(e) have no limit as s - >  0. However ,  it  is easily shown (see Sect. 3) 
tha t ,  a l though (3.14) is false, the  difference at(s)--at_l(s) does have a l imit  

(*) It  is not uniformly convergent on [--1, 1] because ](x) blows up as x-~l .  
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and  in fac t  

(3.15) a t ( e ) - - a z _ l ( e )  --->/~--[~-1. 

I f  we replace 1 b y  l -  1, 1 -  2, ..., 1 in this  re la t ion and  add  the  resul t ing  
limits, we find t h a t  

(3.16) al(e) - -  ao(e) ---> ]z - -  ]o or at(e) - -  g(e) ~ [~, 

where the  funct ion 

g(e ) -=-ao(e ) - - [o  

is independent  of 1 and bounded.  T h a t  is, a l though at(e) does not  approach  fz ,  

the  difference between the  two does become independent  of I as e--> 0. 5Tow 
we have  seen tha t ,  if two sets of pa r t i a l -wave  ampl i tudes  differ b y  an a m o u n t  
independent  of l, then  their  pa r t i a l -wave  series have  the  same sum (as distri-  
but ions) ;  thus  (3.16) implies the  required result .  

To make  this last  point  precise we sub t r ac t  f rom (3.12) the  iden t i ty  

o = g(~) ~: ~ 

to  give 

(3.17) 

1 

~(x) l (x )  

- - I  

co 

dx = l im ~ cp,(a,(e) - -  g(e)).  

:Now we shall show in Sect. 5 t h a t  

(3.18) [at(e)] <~ K l n  ( l +  2) (all l, all e ) .  

Since g(e) is bounded  and ]~0z] < K(1 + 1) - t ,  the  series (3.17) is un i formly  con- 
vergent  for all e. We can therefore  in terchange the  l imit  and  sum to give 

1 

( x ) l ( x )  d x  = Y. q~, l im (az(e) - -  g(e)) = ~ ~0,1, 
0 8--~'0 

--1 

b y  (3.16), as required.  
I n  Sect. 4 we shall use this resul t  to p rove  our  o ther  m a i n  result .  To con- 

clude this Section we r e m a r k  t h a t  the  convergence (as a dis t r ibut ion)  of t h e  
Coulomb par t ia l -wave  series to  the  Coulomb ampl i tude  establishes the  sense 
in which the  at are the  (( correct  ~) Coulomb phase  shifts. The  resul t  also explains~ 
to a great  extent ,  the  surprising success of the  m a n y  au thors  who have  used  
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~he series wi th  a caval ier  disregard for its d ivergence in the  ordinary ,  func- 
t ional,  sense (see ref. (a)). 

4 .  - T h e  C o u l o m b  ampl i tude  as the  l i m i t  o f  a s c r e e n e d  C o u l o m b .  

In  this Section we use the  result  of Sect. 3 to p rove  our  second ma in  result .  
We consider a screened Coulomb po ten t i a l  

(4.1) VQ(r) -~ ~ no(r), 

where the  screening funct ion ~e(r) satisfies 

and  the  two conditions 

1) with e fixed, 
(some ~ > 0); 

O < a Q ( r ) < l ,  

~Q(r)-+0 monoton ica l ly  and  is O(r -~-') as r - - > o o  

2) with r fixed, a e ( r ) - + 1  as ~--> c~. 

He re  the  condit ion 1) guarantees  t h a t  the  screened po ten t ia l  V ~ is a <~ well 
behaved ,~, shor t - range potent ial .  (Tha t  cr ~ is monoton ic  is a technical  a ssump-  
tion, which could be somewhat  re laxed bu t  is a n y w a y  quite harmless .)  Con- 
dition 2) ensures t ha t  V ~ approaches  the  pure  Coulomb po ten t ia l  V :  y/r 
as the  screening radius ~ tends to infinity.  

Subject  to these conditions, we shall  show t h a t  as e - +  ~ the  a m p l i t u d e  
/Q(x) for the  screened poten t ia l  converges as a d is t r ibut ion  to the  Coulomb 
a m p h t u d e  fix), t imes an overall  phase  factor.  Specifically, if ~(~) denotes  
the  real  funct ion 

(4.2) 

then  we shall show t h a t  

ca 

~(~) -~ -- f VQ(r) dr,  
�89 

(4.3) ]q(x) ~-~+ exp [2i$(q)]l(x) (as a d i s t r ibu t ion ) ,  

t h a t  is, for every  (v(x) in C2[--1, 1] with ~ ( 1 ) =  0, 

(4.4) 

1 1 

f~(x) fr dx-Q~+ exp [2i~(9)]f~(z)/(x)dx. 
-1 -1 
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As discussed in the  In t roduc t ion ,  this  resul t  means  t h a t  the  observed  out-  
going wave packe t  sca t te red  off V e is indis t inguishable  f rom t h a t  c o m p u t e d  
with the  Coulomb ampl i tude  ](x) prov ided  ~ is large. This allows us to  use 
screened potent ia ls  to  build up  a t h e o r y  of Coulomb scat ter ing,  and  justifies 
the  use of the  pure  Coulomb ampl i t ude  in pract ica l  s i tuat ions,  where the  
Coulomb po ten t ia l  is in fac t  a lways screened. 

Before going on to the  proof  of (4.4) it  is na tu ra l  to enquire  whe the r  the  
l imit  migh t  not  also hold in the  o rd ina ry  (functional) sense 

(4.5) ]Q(x) - - *  exp [2i~(o)]](x ) 
Q - +  co 

for euch x. I t  turns  out t h a t  this depends  on the  na tu re  of the  screening. 
WEIiXBEI~G (10) has p roved  the  conjecture  of DAL~TZ (11) tha t ,  if y is small  enough 
for the  Born  series to converge, then  for the  special case of exponent ia l  screening 

(4.6) aQ(r) = exp  [-- r/o] 

the  limit (4.5) does hold. To see t h a t  in general  such a l imit  does not hold, 

let us consider a sharp cut-off 

(4.7) ~e(r) ~ 0( 0 -- r) , 

and suppose t h a t  y is so small  t h a t  bo th  ]~ and ] are given b y  the i r  Born  ap- 
proximat ions .  I n  this ease 

] ( x ) - -  7 and  le(x ) _  7 (1-~  cos O V a ) .  
x - - 1  x - - 1  

Obviously  ]Q(x) does not  approach  ](x) as 0 - ~  c~. However ,  if it is first  
smeared with the  smooth  funct ion ~v(x), t hen  the  osci l latory cosine t e r m  goes 
to zero as ~ - ~  c~; and  the  two ampl i tudes  become equal  as dis t r ibut ions.  

Obviously  the  fact  t h a t  the  l imit  (4.5) holds as an ordinary ,  func t iona l  l imi t  
for the  exponent ia l  screening (4.6) (if 7 is small, a t  least) makes  this pa r t i cu la r  
screening funct ion especially i m p o r t a n t  in pract ice.  ~one the less ,  for our p resen t  
purposes the  more  impor t an t  result  is t h a t  the  l imit  (4.3) holds as a dis t r ibu-  

t ion for all screening functions.  
The proof  of (4.3) or (4.4) uses the  pai~ial-wave series for  ]~(x) and f(x). 

Since V ~ is O(r -8-~) as r--~ c~, ]e(x) has  a pa r t i a l -wave  expans ion  

l~(x) = ~ (21 + 1)/~P~(x), 
0 

(10) S. WEINBERG: Phys. Rev., 140, B 516 (1965). 
(11) R. H. DALITZ: Pr0V. Roy. Soc., A206, 509 (1951). 
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which converges uni formly  for all x (*). This can be mul t ip l ied b y  ~(x) and  
in tegra ted  t e r m  b y  term,  to  give for the  lef t -hand side of (4.4) 

1 

--1 

Meanwhile, b y  the  result  of Sect. 3, the  smeared  ampl i tude  on the  r igh t -hand  
side of (4.4) is 

(4.9) 

1 

(x)l(x) d x  = Y.~d,. 
o 

- -1 ,  

Thus all we have  to do is to show t h a t  these two pa r t i a l -wave  series are equal ,  
within the  prescribed phase  factor ,  as r  c~. 

To eva lua te  the  par t ia l -wave  series (4.8) we need the  phase  shifts 5~ for the  
screened potent ia l  V Q. These require a r a the r  messy  calculation,  which we give 
in Sect. 5. However ,  the  result  of this calculat ion can be easily unders tood ,  
as follows: we recall t h a t  the  pure  Coulomb po ten t ia l  has  no phase  shift  in the  
ordinary sense; the  radia l -wave funct ions have  the  a s y m p t o t i c  fo rm 

(4.1o) s i n ( r - -  1 1 ~ +  ~z--  y ln2r)  + O(r-1), 

which, instead of sett l ing down to a fixed phase  as r - +  c ~  continues to pick 
up phase  logari thmically.  Thus,  if we consider the  screened po ten t i a l  V q, 
then  there  is a well-defined phase  shift  5[ for each fixed r but ,  as Q-+ c~ 
and Vq goes over  to the  Coulomb potent ia l ,  this phase  shift diverges.  F o r  
example,  with the  sharply  t runca ted  po ten t ia l  given b y  (4.7) it  is easily seen 
f rom (4.10) t h a t  

(4.11) 6zo = ~ - -  7,1n2 9 + 0(0-~),  

and in general,  as we shall p rove  in Sect. 5, 

(4.12) ~ o _ ~ +  a~q- ~(Q) 
,$ ~,--~-co 

for any  screening function, where ~(~) is the  real  funct ion defined in (4.2). 
I t  is easily seen t h a t  the  funct ion ~(~), and  hence the  phase  shift, has no l imi t  
as ~) --> c~. 

(*) I t  is not hard to prove (by means of the bound on p. 85 of ref. (12), for example) 
~hat if V =  O(r -a-~) as r ~  c~ then If~[ <:K/12+~. 
(12) V. DE ALPARO and T. REGGE: Potential Scattering (Amsterdam, 1965). 
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A l t h o u g h  t he  phase  shifts ~~ t h a v e  no  l imi t  ~s t h e  sc reening  rad ius  @ --> c~,  

t h e  a s y m p t o t i c  f o r m  (4.12) allows us to  p rove  the  desi red resul t .  P r o m  (4. /2)  
i t  follows t h a t  the  pa r t i a l -wave  amp l i t udes  b e h a v e  as fo l lows:  

fQ exp  [2i~] - -  1 exp  [2 i (~  + ~(@))J - -  1 
. l ~ 2 i  Q - - ' ~ "  2i 

-= exp  [2i~(@)]/, + 
exp  [2i~(e) ] - -  1 

2i  
= exp [2 i~(e) ] / ,+  g(e),  

which  aga in  has no l imit  as ~--> c~. H o w e v e r ,  t he  i m p o r t a n t  p o i n t  is t h a t ,  

a p a r t  f r o m  the  expec ted  overal l  phase ,  ][ app roaches  t he  Cou lomb  par t ia l -  
wave  ampl i tude ,  plus a term which is independent o] l  and is bounded. This  is 

e x a c t l y  ana logous  to  t he  s i tua t ion  in Sect .  3 (cf. eq. (3.16), where  t he  func-  
t ion  g(e) as e - ->0  is the  ana logue  of our  p resen t  g(@) as @-+ c~). T h u s  ex- 
a c t l y  t h e  p roof  of Sect .  3 es tabl ishes  t h a t  

I f  we inser t  (4.8) a nd  (4.9), this  becomes  t he  desi red resu l t  (4.4). 

5 .  - S o m e  p r o o f s .  

Bound on at@). W e  have  to  es tabl i sh  the  b o u n d  (3.18) 

(5.1) [a,(e)l < K l n  ( l +  2 ) .  

Since each a,(e) (with l fixed) is b o u n d e d  we can  exc lude  t he  values  l =  0 

a n d  1 f r o m  our  discussion. W e  t h e n  wr i te  

(5.2) 

b 1--8  

- -1  b 

where  t he  va lue  of b = b(1) is chosen  (*) so t h a t  P~(x) is m o n o t o n i c  and  pos- 

i t ive b e t w e e n  x ~- b a nd  x ---- 1. To  see how to  do this ,  we  n o t e  t h a t  P~(cos 0) 
is ce r t a in ly  m o n o t o n i c  and  pos i t ive  be t we e n  0 = 0 a n d  its first  zero 01(1). ~ o w  
it  can be shown t h a t ,  as 1 -+ c~, O~(1) -+ ~x/1, where  ~1 is t he  first zero of t he  

Bessel f unc t ion  Jo(@) (see ref. (s), p. 193). Thus ,  as a f u n c t i o n  of x, P, (x)  has  

(*) Once b is chosen, then for certain values of e we will have 1 - - ~ <  b, in which 
case there is no need for the second term in (5.2). We shall see tha t  this can only 
improve matters. 
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its first zero a t  

and,  if we t ake  

�9 ~(1) - ~  1 - Q~/2~ ~ , 

b : ] - - c / l ~  

with c sufficiently small, t hen  Pz(x) is monoton ic  und posi t ive  for b < x < l .  
This lets us app ly  the second mean-va lue  t heo rem (*) to the  second t e r m  
in (5.2) to give 

(5.3) l f / ( x ) P l ( x ) d x  -~ l ~ d l - - e ) f / ( x ) d x  < c o n s t a n t  (some ~:). 

b 

Meanwhile the  first t e r m  in (5.2) satisfies 

(5.4) 

b b b 

--1 --i --I 

= IrI in  ( 2 / ( 1  - b)) = Ivl In (2~ /~)  < c o n s t a n t  • In l .  

Combining (5.3) and (5.4) in (5.2) and choosing K appropr i a t e ly  we ob ta in  the  
desired result  (5.1). 

Behaviour o] at(s) as e-->O. We wish to prove  the  result  (3.15) t h a t  
a s  s - ~ 0  

at(s)--a,_l(s) --~]l--]t-1. 

F r o m  the  definition (3.13) of the  at(e) 

az(s) -- at_l(s) ~-- �89 f l(x)(Pt(x) -- P,_l(X)) dx .  
- -1  

This integral  has  a well-defined l imit  as s --> 0, because the  s ingular i ty  of ](x) 
at  x - ~  i is cancelled by  the  vanishing of P t -  P ,_I .  Thus  

1 1 
?' 

a,(s)-a~_,(~) _1~ f / (P , -  P,_,) dx = ~ f(1-- x)-,-',(P,-- P,_I) d~. 
--1 - -1  

(*) See, for example, WHITTAKER and W~_TSON (la), p. 66. 
( l a )  E. T. WIIITTAKEI~ and G. N. WATSON: Modern Analysis (Cambridge, 1962). 

2 2  - II  Nuovo Cimento B.  
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This integral  is easily eva lua ted  with  the  help of s t anda rd  in tegra l  tables.  F o r  
example ,  GRADS~iTEYN and RYZI~IK (~4), p. 797, give the  integruI  of (1 - -  x)"P~ 

(which is convergent  for l ~ e a ~ - - 1 ) .  F r o m  this we can write down the  in- 
tegral  of (1 - -  x)~ - -  P~_~) and then  cont inue  ana ly t ica l ly  to G ~ - -  1 - -  @. 
The result  is 

r (~+ i~,) I i+!~, ~} _ s, - -s,_,_/ ,_1,_,  
~,(~)- a,_~(~) ~ ~-i r ( i ~ ) / l - i ~  2i  

as required.  

Phase  shil ls  for the screened potential .  We wish to  p rove  the  resul t  (4.12) 
tha t ,  if (~q is the  phase  shift  for the  screened poten t ia l  V Q, then  as the  screening 
radius Q --> c~ 

(5.5) 

where 
c o  

~(~) ~ - - f  VQ(r) d r .  
�89 

Since we are interested here in a single value of the  angular  m o m e n t u m  l, 
we shall suppress t h a t  var iable  in w h a t  follows. 

To p rove  (5.5) we use Calogero's  va r i ab le -phase  me thod  (~5). We  define 
the  p h a s e / u n c t i o n  6(r), for any  po ten t ia l  V, to be the  phase  shift  ob ta ined  if V 
is t r unca t ed  a t  r~dius r. Clearly ~(0)----0, and  ~(c~)--~ 5, t he  ac tua l  phase  
shift for the  potent ia l  V itself. The phase  funct ion for a n y  r is t hen  de te rmined  
b y  the  phase  equat ion 

~-~r (r) ~ - -  2 V(r)(sin (~(r)~(r) -~ cos 5(r) ~(r)) ~ , 

where ~ and ~ are the  Riccat i - :Neumann ~nd Bessel  funct ions  in the  no t a t i on  
of ref. (5). ]~eplacing these by  their  a s y m p t o t i c  forms,  we get  

d~ 
(5.6) ~ r  (r) 

where  

(5.7) 

= - 2 V ( r ) { s i n 2  (r + �89 + ~(r)) + O(r-')} = 

-~ - -  2 V (r)( s in  2 x §  O(r-~) ) , 

x ~- r §  � 8 9 2 4 7  5(r ) .  

(14) I. S. GRADSHTEYN and I. M. RYZHIK: Tables o/ Integrals, Series and Products 
(New York, N.Y. ,  1965). 
(is) F. CALOGERO: The Variable Phase Approach to Potential Scattering (New York, 
N. u 1967). 
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We can now apply this method  to the screened potential  

Ve(r) = ~ o~q(r) , 

where the screening function aq(r) satisfies the conditions discussed at  the  
beginning of Sect. 4. I f  we integrate (5.6) f rom any  fixed R to c~, we obta in  

(5.8) 
r  

6. = 6 (R) - z f V (r) sin*xdr + O ( R  -1) . 
t1 

The term sin~x in the integrand depends in a complicated way  on the  phase 

function 6q(r)--see (5.7) above. However  it turns out t ha t  in the  present  case 
the phase funct ion varies so slowly tha t  we can replace the  terra sin2x b y  

its average value �89 To see this we write 2 sin2x as 1 - - c o s 2 x  and examine 
the integral 

(5.9) 

c o  

f Vq(r) cos 2x d r .  

Since d6q/dr is O(r-1), it is clear f rom (5.7) tha t  x is a str ict ly increasing func- 
tion of r (for r sufficiently large) and vice versa. We can then change variables 

from r to x and V ~ is a monotonic  funct ion of x. This allows us to apply  the  
second mean-value theorem, and a brief calculation then shows tha t  the in- 

tegral (5.9) is O(R-~). We can therefore rewrite (5.8) as 

(5.~0) 6~ ~- 6~(R) -- f Vq(r) dr ~- O(R -1) . 
R 

The reader can easily check tha t  this estimate is uniform for all ~. 

The result (5.10) shows that ,  to order R -I, the contr ibut ion to 6 Q f rom 
radii r > R is independent  of l and has the advert ised dependence on the  po- 
tential. I t  remains to show tha t  the contr ibut ion from radii r < R is related 

to the Coulomb phase shifts in the way  specified. To this end we recall t h a t  on 
any  fixed interval  0 < r < R the screened potent ia l  approaches the pure Coulomb 
potential  as ~ - +  oo; to be presise 

V~(r) = ~ ~(r)  , 

and as ~ - ~ o o  

~( r )  --> 1 
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uni formly  on [0, R]. I t  is fair ly obvious,  and  easily shown, t h a t  under  these  
conditions the phase  funct ion ~e(R) goes over  to the  pure  Coulomb phase  func t ion  

(5.11) 5Q(R) ~ +  5e~ (any fixed R ) .  

:Now the  pure  Coulomb phase funct ion has a l ready  been given in (4.11) and,  
in our present  nota t ion,  is 

(5.12) ~c~ ~ a - -  ~, ln2R § O(R -~) . 

Our proof is now almost  complete.  We can first choose R so large t h a t  the  
te rms  O(R -1) in (5.10) and (5.]2) are bo th  less t h a n  a n y  desired small  amoun t .  
H a v i n g  chosen R, we can find ~0 such t h a t  the  two sides of (5.11) differ b y  less 
t han  the  same small  amoun t  for all ~ o .  This establishes t h a t  

(5.13) 5e ~ +  a - -  ~ In 2R - - f  Ve(r) 
R 

Finally,  we note  t h a t  as ~--> c<~ 

dr .  

f VQ(r) dr In 2R.  Y 
�89 

Thus, the  last  two te rms  in (5.13) can be combined  as t V~ and  we have  
the desired result .  

Nonexistence o/ a partial-wave series ]or f(x). The a rgumen t  given in Sect. 2 
shows t h a t  the  Coulomb ampl i tude  can never  be expanded  in a series 

(5.14) ](x) = y~ (2~ § 1)a~P~(x) 

which is uni formly  convergent .  There  remains  the  possibi l i ty t h a t  there  could 
be  an expansion of this form which is not  un i fo rmly  convergent .  We  can ex- 
clude this as follows. 

Suppose t h a t  the  series (5.14) is convergent  for - - 1 ~ < x ~ 1 .  (At x : l  i t  
will p re sumab ly  diverge, bu t  this makes  no difference.) We can mu l t i p ly  this 
series b y  ( 1 -  x) 2 to give 

oo 

( 1  - -  x)2](x) = ~ ( 2 / +  1)a~(1 - -  x)2P~(x), 
0 

which is convergent  for - - ]  ~ < x < l .  Using the  recursion relat ions for the  
Legendre polynomials  we can write (1 - -x )2P~  as a l inear combina t ion  of 
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P t - 2 ,  . . . ,  Pt+2 and hence obtain a series 

co 

(5.15) (1 -- x)2/(x) ~ ~_ (2l ~- ])btP~(x) 
0 

(-- 1 < x < 1 ) ,  

where each coefficient b~ is a certain linear combinat ion of the at. Obviously 
if the at were known we could immedia te ly  determine the bz; conversely, it is 

easily checked tha t  if the bz were known we could calculate all of the  at, apar t  
from two undetermined constants.  

blow~ the funct ion (1--x)2](x)  on the left-hand side of (5.15) is a well- 

behaved function which has a normal  Legendre expansion 

(5.16) (1 -- x)~](x) : ~ (21 -~ 1)c~P~(x) (-- 1 < x <  1) ,  

where the coefficients ct are given by  the  usual formula 

1 1 

(5.17) c~: -~  ( 1 - - x ) 2 / ( x ) P ~ ( x ) d x ~ - - ~  (1 - -x ) l -~rP~(x )dx .  

- -1  - -1  

This integral is easily evaluated (see ref. (14), p. 797). 
The expansions (5.15) and (5.]6) are expansions of the same function,  both  

convergent for - - l < x < l .  I t  follows (*) t ha t  the coefficients bt are the same 

as the ct, which we have just seen can be calcul,~ted from (5.17). Once we know 
the bt we can, as discussed above, determine the original at apar t  f rom two 

constants. The result of this (quite lengthy) calculation is 

(5.18) at = / z  -~- A -~ Bl(1 ~- 1), 

where It is the Coulomb part ial-wave ampli tude and A and B are undetermined  

constants. 
Since the series (5.14) is convergent  (by hypothesis) it is clear t ha t  the  

constant  B in (5.18) is zero. Thus we have established the following result :  
I f  the expansion (5.14) converges pointwise for all x ve 1, then  the  expansion 

coefficients at must  be 

a,  = 1, § A .  

But  from the  properties of It established in Sect. 2, it is clear tha t ,  with 

(*) This is actually a rather subtle point. The result we are using is that if 
~ z P l ( x ) = O  for - - l < x < l ,  then ~z= 0 (even when the series is not necessary uni- 
formly convergent). I have been unable to find this result in the literature and aln much 
indebted to Prof. J. CLUNIE O:[ Imperial College for kindly showing me how to prove it. 



3 3 4  ~. l~. ~ i ~ ' L O n  

a~ ~ /~ q- A ,  t h e  series (5.]4) is not  c o n v e r g e n t  ( w h a t e v e r  we t a k e  for A).  Thi~ 

is the  des i red con t r ad ic t ion .  

I t  is a p leasure  to  acknowledge  t he  he lp  of severa l  f r iends  a n d  col leagues.  

The  m a i n  ideas of this  pape r  were d iscussed  a t  l e n g t h  w i th  D. GOODlgA]~SON. 

Severa l  proofs were m u c h  simplif ied w i t h  t he  help  of E.  CAMPESINO-ROMEO 

a n d  M. S E ~ o ~ .  A n d  the  t h e o r e m  q u o t e d  t he  f o o t n o t e  a t  t he  e nd  of Sect .  5 

was shown to me  b y  Prof.  J .  CLUNIE. 

Note added in  proofs. 

In  a recent paper (18) PRUGOV]~CKI and ZORBAS have established a connection 
between screened and unscreened Coulomb amplitudes,  similar to t h a t  described in 
Sect. 4. While our method of proof is more elementary than  theirs, their  method is 
in most respects much more general. 

(16) E. PttUGOVECKI and J. ZOI~BAS: Nuel .  Phys . ,  213A, 541 (1973). 

�9 R I A S S U N T 0  (*) 

Con qucsto lavoro si stabiliscono due proprict~ dcllo scattering non relativistico di 
Coulomb. La prima ~ che, se considcrata come distribuzione, la serie dclle onde parziali 
di Coulomb 5 convergcnte (sebbcnc sia divcrgente oome funzione) e converge all 'ampiezza 
di Coulomb. La seconda propricts la cui dimostrazione si avvalc della prima, ~ che 
l 'ampiczza di ogni potenziale di Coulomb seherinato converge come distribuzione 
all 'ampiczza di Coulomb (moltiplicata per un  fattore di fase onnicomprensivo) quando 
il raggio di schcrmatura tende all ' infinite.  Si deduce ehe questa seconda propriet~ 
pub essere postn alla base di un~ succinta ma rigorosa teoria dello scattering di Coulomb. 

(*) Traduzione a cura della Redazione. 

HOBM~ CTpOrufi HO~XO~ K gyJ~OHOBCgOMy paccesHmo. 

Pe3IoMe (*). - -  B 3To~ CTaTbe ycTattaBYmBa~OTC~l ~Ba CBO~CTBa Hepen~T~BHCTCKOrO 
Ky~OHOBCKOrO pacceam~s. 1-IepBoe CBOffICTBO COCTOI4T B TOM, qTO KyI/OHOBCKI4~ p ~  1IO 
napJ2HanbHbIM BonHaM ~BYLqeTC~ CXO~aII~HMC~ H CXO~HTC~ K Ky~OHOBCKO~ aMrI~HTy~e. 
B COOTBeTCTBHH CO BTOpbIM CBO~CTBOM, aMrraHTy)Ia ~n~ nro60ro 3KparIrIpoBaHHoro 
KyYloI/oBCKOFO noreH~nana CXO~HTC~, Korea pa~uyc 9~paHHpoBarm~ CTpeMHTC~I K 6ecKo- 
He~HocTm YKa3bmaeTc~, aTO 3TO BTopoe CBO~ICTBO Mo3KeT 6bITb HCrlOYlb3OBaHO, ~aK 
6a3Hc ~ a  3KOHOMHOH, HO crporo~ Teop~n ~y~OHOBC/~OrO pacce~n~s. 

(*) Hepeee3eno pec)atcque~. 


