DUE: TUESDAY, JANUARY 20, 2015

1. Show that for complex scalar fields,

$$\int \mathcal{D}\Phi^* \mathcal{D}\Phi \exp\left\{i \int d^4x \, d^4y \left[\Phi^*(x)M(x,y)\Phi(y)\right] + i \int d^4x \left[J^*(x)\Phi(x) + \Phi^*(x)J(x)\right]\right\}$$
$$= \mathcal{N}\frac{1}{\det M} \exp\left\{-i \int d^4x \, d^4y \, J^*(x)M^{-1}(x,y)J(y)\right\},$$

for some infinite constant \mathcal{N} . This is problem 14.1 on p. 283 of Schwartz.

2. (a) Derive the result:

$$\int d^4z\, \frac{\delta^2 W[J]}{\delta J(x)\delta J(z)} \frac{\delta^2 \Gamma[\Phi]}{\delta \Phi(z)\delta \Phi(y)} = -\delta^4(x-y)\,,$$

and interpret diagrammatically. Here, W[J] is the generating functional for the connected Green functions and $\Gamma[\Phi]$ is the generating functional for the one particle irreducible (1PI) Green functions.

- (b) By taking one further functional derivative, show that Γ generates the amputated connected three-point function.
- 3. Consider the quantum field theory of a real scalar field governed by the Lagrangian,

$$\mathscr{L} = \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - \frac{1}{2}m^{2}\phi^{2} - \frac{\lambda}{4!}\phi^{4}.$$

- (a) Evaluate the generating functional for the connected Green functions, W[J], perturbatively, keeping all terms up to and including terms of $\mathcal{O}(\lambda)$.
- (b) Using the result of part (a), compute the four-point connected Green function, take the appropriate Fourier transform, and verify the momentum space Feynman rule for the four-point scalar interaction obtained in class.
- (c) Evaluate the classical field $\phi_c(x)$ and the generating functional for the 1PI Green functions, $\Gamma[\phi_c]$, perturbatively, keeping all terms up to and including terms of $\mathcal{O}(\lambda)$. Then, repeat part (b) for the four-point 1PI Green function.

4. Consider a scalar field theory defined by the Lagrangian density

$$\mathcal{L} = \frac{1}{2} \partial^{\mu} \phi(x) \partial_{\mu} \phi(x) - V(\phi(x)), \qquad (1)$$

and the corresponding equation of motion,

$$\Box \phi(x) + V'(\phi) = 0,$$

where $\Box \equiv \partial^{\mu} \partial_{\mu}$ and $V' \equiv dV/d\phi$.

(a) Starting from eq. (14.122) on p. 276 of Schwartz, derive the equation of motion for the Green function $\langle \Omega | T \{ \phi(x) \phi(y) \} | \Omega \rangle$,

$$\Box_x \langle \Omega | T \{ \phi(x) \phi(y) \} | \Omega \rangle = -\langle \Omega | T \{ V'(\phi(x)) \phi(y) \} | \Omega \rangle - i \delta^4(x - y) . \tag{2}$$

(b) Derive eq. (2) by the following technique. Start from the path integral definition of the generating functional,

$$Z[J] = \mathcal{N} \int \mathcal{D}\phi \, \exp\left\{i \int d^4x \left[\mathcal{L} + J(x)\phi(x)\right]\right\},\,\,(3)$$

where \mathcal{N} is chosen such that Z[0] = 1. Perform a change of variables in the path integral, $\phi(x) \to \phi(x) + \varepsilon(x)$, where $\varepsilon(x)$ is an arbitrary infinitesimal function of x. Noting that a change of variables¹ does not change the value of Z[J], show that to first order in $\varepsilon(x)$,

$$\int \mathcal{D}\phi \, \exp\left\{i \int d^4x \left[\mathcal{L} + J(x)\phi(x)\right]\right\} \int d^4x \, \varepsilon(x) \left[-\Box \Phi - V'(\phi) + J(x)\right] = 0. \tag{4}$$

Since $\varepsilon(x)$ is arbitrary, we may choose $\varepsilon(x) = \epsilon \, \delta^4(x - y)$, where ϵ is an infinitesimal constant. With this choice for $\varepsilon(x)$, show that by taking the functional derivative of the eq. (4) with respect to J(x) and then setting J = 0, one can derive eq. (2).

HINT: What is the Jacobian corresponding to the change of variables, $\phi(x) \to \phi(x) + \varepsilon(x)$?

5. Consider a field theory of a real pseudoscalar field coupled to a fermion field. The interaction Lagrangian is:

$$\mathscr{L}_{\rm int} = -i\lambda \, \overline{\psi}(x) \, \gamma_5 \, \psi(x) \phi(x) \,,$$

where λ is a real coupling constant (called the Yukawa coupling). Using functional techniques, derive the Feynman rule for the interaction vertex of this theory.

¹Just as in the case of ordinary functional integration, a change of integration variables does not change the value of the functional integral.