DUE: THURSDAY, FEBRUARY 19, 2015

1. In class, I defined the matrix-valued covariant derivative operator in the adjoint representation, \mathcal{D}_{μ} , by

$$\mathscr{D}_{\mu}V_{\nu} \equiv (D_{\mu}V_{\nu})_{a}T^{a} = \partial_{\mu}V_{\nu} + ig[A_{\mu}, V_{\nu}],$$

where $V_{\nu} \equiv V_{\nu}^{a} T^{a}$ is a matrix-valued adjoint field and $(D_{\mu})_{ab} \equiv \delta_{ab} \partial_{\mu} + g f_{cab} A_{\mu}^{c}$ is the covariant derivative acting on a field in the adjoint representation. The commutation relations satisfied by the generators of the Lie group G are given by $[T_{a}, T_{b}] = i f_{abc} T_{c}$, and the indices a, b and c take on d_{G} possible values, where d_{G} is the dimension of G.

(a) Prove that for any pair of matrix-valued adjoint fields V and W,

$$[\mathscr{D}_{\mu}, V]W = (\mathscr{D}_{\mu}V)W,$$

where $[,]$ is the usual matrix commutator. This means that $\mathscr{D}_{\mu}V=[\mathscr{D}_{\mu}\,,\,V]$ holds as an operator equation.

(b) Prove that for any matrix-valued adjoint field V,

$$[\mathscr{D}_{\mu}\,,\,\mathscr{D}_{\nu}]V = ig[F_{\mu\nu}\,,\,V]\,,$$

where $F_{\mu\nu} \equiv F_{\mu\nu}^a T^a$ is the matrix-value field strength tensor of the non-abelian gauge theory.

- 2. Consider the spontaneous breaking of a gauge group G down to U(1). The unbroken generator $Q = c_a T^a$ is some real linear combination of the generators of G.
- (a) Prove that $x_b \equiv c_b/g_b$ is an (unnormalized) eigenvector of the vector boson squared-mass matrix, M_{ab}^2 , with zero eigenvalue.
- (b) Suppose that A_{μ} is the massless gauge field that corresponds to the generator Q. Show that the covariant derivative can be expressed in the following form:

$$D_{\mu} = \partial_{\mu} + ieQA_{\mu} + \dots \,, \tag{1}$$

where we have omitted terms in eq. (1) corresponding to all the other gauge bosons and

$$e = \left[\sum_{a} \left(\frac{c_a}{g_a}\right)^2\right]^{-1/2}.$$
 (2)

HINT: The vector boson mass matrix is diagonalized by an orthogonal transformation $\mathcal{O}M^2\mathcal{O}^T$ as shown in class. The rows of the matrix \mathcal{O} are constructed from the *orthonormal* eigenvectors of M^2 .

- (c) Evaluate Q in the adjoint representation (that is, $Q = c_a T^a$, where the $(T^a)_{bc} = -i f_{abc}$ are the generators of the gauge group in the adjoint representation). Show that $Q_{bc}x_c = 0$, where x_c is defined in part (a). What is the physical interpretation of this result?
- (d) Prove that the commutator $[Q, M^2] = 0$, where Q is the unbroken U(1) generator in the adjoint representation and M^2 is the gauge boson squared-mass matrix. Conclude that one can always choose the eigenstates of the gauge boson squared-mass matrix to be states of definite unbroken U(1)-charge.
- 3. In class, we examined in detail the structure of a spontaneously broken $SU(2)\times U(1)_Y$ gauge theory, in which the symmetry breaking was due to the vacuum expectation value of a Y=1, SU(2) doublet of complex scalar fields. In this problem, we will replace this multiplet of scalar fields with a different representation.
- (a) Consider a spontaneously broken $SU(2)\times U(1)_Y$ gauge theory with a Y=0, SU(2) triplet of real scalar fields. Assume that the electrically neutral (Q=0) member of the scalar triplet acquires a vacuum expectation value (where $Q=T_3+Y/2$). After symmetry breaking, identify the subgroup that remains unbroken. Compute the vector boson masses and the physical Higgs scalar masses in this model. Deduce the Feynman rules for the three-point interactions among the Higgs and vector bosons.
- HINT: Since the triplet of scalar fields corresponds to the adjoint representation of SU(2), the corresponding SU(2) generators that act on the triplet of scalar fields can be chosen to be $(T^a)_{bc} = -i\epsilon_{abc}$. The hypercharge operator annihilates the Y = 0 fields. Define $L^a = ig_aT^a$, and follow the methods outlined in class.
- (b) Consider a spontaneously broken $SU(2)\times U(1)_Y$ gauge theory with a Y=2, SU(2) triplet of *complex* scalar fields. Again, assume that the electrically neutral (Q=0) member of the scalar triplet acquires a vacuum expectation value (where $Q=T_3+Y/2$). After symmetry breaking, identify the subgroup that remains unbroken. Compute the vector boson masses and the physical Higgs scalar masses in this model.
- (c) If both doublet and triplet Higgs fields exist in nature, what does this exercise imply about the parameters of the Higgs Lagrangian?
- 4. (a) Compute the differential cross section at $\mathcal{O}(\alpha_s^2)$ for $q\bar{q} \to t\bar{t}$ (where $q \neq t$ is any light quark and t is the top quark), in terms of the center-of-mass energy \sqrt{s} and the squared four-momentum transfer t. Integrate your result over t to obtain the total cross section as a function of the squared center-of-mass energy s. In your calculation, average over initial colors and spins and sum over final colors and spins. You may assume that the initial quark and anti-quark are massless, but do *not* neglect the mass of the top-quark.
- (b) Compute the differential cross section at $\mathcal{O}(\alpha_s^2)$ for $gg \to t\bar{t}$, where g is a gluon, in terms of the squared center-of-mass energy \sqrt{s} and the squared four-momentum transfer t. Integrate your result over t to obtain the total cross section as a function of s. In your calculation, average over initial colors and spins and sum over final colors and spins.