Physics 218 Problem Set #3 Winter 2015

DUE: THURSDAY, FEBRUARY 19, 2015

1. In class, I defined the matrix-valued covariant derivative operator in the adjoint represen-
tation, Z,,, by
2.V, = (D,V,), T = 0,V, +ig[A,, V],

where V,, = V*T is a matrix-valued adjoint field and (D,,)a = dan0pu+ g fear Ay, is the covariant
derivative acting on a field in the adjoint representation. The commutation relations satisfied
by the generators of the Lie group G are given by [T, , T} = i fap.1e, and the indices a, b and ¢
take on dg possible values, where dg is the dimension of G.

(a) Prove that for any pair of matrix-valued adjoint fields V' and W,
2, VIW = (2,V)W,

where [, ] is the usual matrix commutator. This means that 2,V = [Z,,, V] holds as an
operator equation.

(b) Prove that for any matrix-valued adjoint field V',
[-@;u -@V]V = Z'g[FW, V] )

where F,,, = Fj T is the matrix-value field strength tensor of the non-abelian gauge theory.

2. Consider the spontaneous breaking of a gauge group G down to U(1). The unbroken
generator () = ¢, T* is some real linear combination of the generators of G.

(a) Prove that x, = ¢,/gp is an (unnormalized) eigenvector of the vector boson squared-
mass matrix, M2, with zero eigenvalue.

(b) Suppose that A, is the massless gauge field that corresponds to the generator ¢). Show
that the covariant derivative can be expressed in the following form:

D, =0,+ieQA,+ ..., (1)

where we have omitted terms in eq. (1) corresponding to all the other gauge bosons and

-6 .

HINT: The vector boson mass matrix is diagonalized by an orthogonal transformation O M?2?OT

as shown in class. The rows of the matrix O are constructed from the orthonormal eigenvectors
of M?2.



(c) Evaluate @) in the adjoint representation (that is, @ = ¢, 7%, where the (T%)pe = —i fupe
are the generators of the gauge group in the adjoint representation). Show that Qp.xz. = 0,
where z. is defined in part (a). What is the physical interpretation of this result?

(d) Prove that the commutator [@Q, M?] = 0, where @ is the unbroken U(1) generator in
the adjoint representation and M? is the gauge boson squared-mass matrix. Conclude that
one can always choose the eigenstates of the gauge boson squared-mass matrix to be states of
definite unbroken U(1)-charge.

3. In class, we examined in detail the structure of a spontaneously broken SU(2)xU(1)y gauge
theory, in which the symmetry breaking was due to the vacuum expectation value of a Y =1,
SU(2) doublet of complex scalar fields. In this problem, we will replace this multiplet of scalar
fields with a different representation.

(a) Consider a spontaneously broken SU(2)xU(1)y gauge theory with a Y = 0, SU(2)
triplet of real scalar fields. Assume that the electrically neutral (@ = 0) member of the scalar
triplet acquires a vacuum expectation value (where Q = T3+ Y/2). After symmetry breaking,
identify the subgroup that remains unbroken. Compute the vector boson masses and the
physical Higgs scalar masses in this model. Deduce the Feynman rules for the three-point
interactions among the Higgs and vector bosons.

HINT: Since the triplet of scalar fields corresponds to the adjoint representation of SU(2),
the corresponding SU(2) generators that act on the triplet of scalar fields can be chosen to be
(T%)p. = —i€ape- The hypercharge operator annihilates the Y = 0 fields. Define L® = ig, T,
and follow the methods outlined in class.

(b) Consider a spontaneously broken SU(2)xU(1)y gauge theory with a Y = 2, SU(2)
triplet of complez scalar fields. Again, assume that the electrically neutral ( = 0) member of
the scalar triplet acquires a vacuum expectation value (where @ = T5+Y/2). After symmetry
breaking, identify the subgroup that remains unbroken. Compute the vector boson masses
and the physical Higgs scalar masses in this model.

(c) If both doublet and triplet Higgs fields exist in nature, what does this exercise imply
about the parameters of the Higgs Lagrangian?

4. (a) Compute the differential cross section at O(a?) for qg — tt (where q # t is any light
quark and t is the top quark), in terms of the center-of-mass energy /s and the squared
four-momentum transfer ¢. Integrate your result over ¢ to obtain the total cross section as
a function of the squared center-of-mass energy s. In your calculation, average over initial
colors and spins and sum over final colors and spins. You may assume that the initial quark
and anti-quark are massless, but do not neglect the mass of the top-quark.

(b) Compute the differential cross section at O(a?) for gg — tt, where g is a gluon, in
terms of the squared center-of-mass energy /s and the squared four-momentum transfer ¢.
Integrate your result over t to obtain the total cross section as a function of s. In your
calculation, average over initial colors and spins and sum over final colors and spins.



