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DUE: TUESDAY, MARCH 17, 2015

1. By using the BRST-invariance of QED, one can derive the well known relation between
the vertex function and the inverse propagator that is given in eq. (19.80) of Schwartz (on
p. 352). Here is how to do it:

From part (d) of problem 1 of Problem Set 2, you know that:

〈Ω|T (ψ(x)ψ(y)φ(z))|Ω〉 = 0 .

Using the BRST-invariance of the theory, this Green function must remain zero under an
(infinitesimal) BRST-transformation. Computing to first order, deduce an equation that
relates three different Green functions. Although some of these Green functions involve the
scalar field, one may eliminate it by explicitly evaluating the scalar field propagator [after
invoking one of the relations proved in part (d) of problem 1 of Problem Set 2]. Then, one can
derive the Ward Identity for QED that relates the vertex function and the inverse propagator.
Transforming to momentum space, check that the final result coincides with eq. (19.80) of
Schwartz.

2. Consider the function of a real parameter z

F (z) ≡
∫ 1

0

dx ln
[

1− zx(1 − x)− iǫ
]

,

which appeared in the computation of the one-loop correction to the four-point function in
scalar field theory.

(a) Evaluate Im F (z). For what values of z does Im F vanish?

HINT: First, determine the imaginary part of the integrand. Note that ln
[

1− zx(1− x)− iǫ
]

should be interpreted as the principal value of the complex-valued logarithm, with the branch
cut along the negative real axis. Since ǫ is a positive infinitesimal, the sign of the imaginary
part is uniquely determined. Then, carry out the integration, noting that the imaginary part
of the integrand may vanish over part (and in some cases all) of the integration range.

(b) Let Γ(4) be the 1PI four-point function in a field theory of a real scalar field (with an
interaction Lagrangian given by Lint = −λφ4/4!). Using the cutting rules given in Section
24.1.2 [pp. 456–459] of Schwartz, evaluate Im Γ(4) up to order λ2. Check your result by
starting with the full O(λ2) expression for Γ(4) obtained in class, and implementing the results
of part (a).

(c) Explain briefly when you expect the evaluation of a Feynman diagram to yield non-zero
imaginary part.



3. The photon vacuum polarization function is defined to be:

Πµν(q) = (qµqν − gµνq2)Π(q2) .

In class, we evaluated this function at one-loop in the MS scheme. Consider a second scheme,
called the on-shell scheme, in which we define Π(q2 = 0) ≡ 0.

(a) Evaluate Z3 in this scheme.

(b) Obtain asymptotic forms for Π(q2) in two limiting cases: (i) q2 → 0, and (ii) q2 → ∞.

(c) Using the q2 → 0 limit of part (b), compute the O(α) correction to the Coulomb
potential. OPTIONAL: Compute the O(α) correction to the Coulomb potential without
making the approximation of small q2. Examine explicitly the limiting cases mer ≫ 1 and
mer ≪ 1.

(d) Show that the quantity:

αeff(q
2) ≡ α

1 + Π(q2)

is independent of whether you evaluate this expression using bare or renormalized quantities.
As a result, argue that αeff(q

2) is independent of renormalization scheme. Outline how you
would relate the coupling constants defined in the MS and on-shell schemes. Sketch a graph
of αeff(−q2) at one-loop, in the on-shell scheme, i.e. for negative values of the argument].

NOTE: In the on-shell scheme, αeff(0) is the fine structure constant, which is approximately
equal to 1/137.

(e) Calculate the numerical value of the momentum scale (in GeV units) where αeff(−q2)
blows up.

4. Consider QED coupled to a neutral scalar field:

L = LQED + 1
2
∂µφ∂

µφ− 1
2
m2φ2 − λ

4!
φ4 − gψψφ .

(a) Compute the amplitude for the decay φ → γγ, as a function of me, m, g, and
α ≡ e2/(4π), using perturbation theory at one-loop. Simplify your answer by invoking the
kinematics of the problem, i.e. momentum conservation and the on-shell conditions for the
external particles. Take care to consider two diagrams which differ only in the direction of
flow of electric charge in the loop. Do you need to add a counterterm in order to remove an
infinity? Explain.

(b) Denote the amplitude for the scalar decay by Mµν , where µ and ν are the photon
Lorentz indices. Gauge invariance implies that kµ1Mµν = kν2Mµν = 0, where k1 and k2 are
the respective photon momenta. Does your amplitude of part (a) respect this requirement?

(c) Work out all integrals explicitly and evaluate the imaginary part of Mµν . For what
range of me/m is the amplitude purely real? Explain the physical significance of the non-zero
imaginary part.



HINT: You may find the following integral useful:

∫ 1

0

dy

y
log

[

1− 4Ay(1− y)
]

= −2
(

sin−1
√
A
)2

,

for 0 ≤ A ≤ 1. For values of A outside this region, you may analytically continue the above
result. The imaginary part of this integral is easily computed once the iǫ factor is restored in
the argument of the logarithm.

(d) Evaluate the leading behavior of Mµν in the limit of me → ∞.

5. In QED, the renormalization group functions are:

β(e) = µ
deR
dµ

,

δ(e) = µ
daR
dµ

,

mRγm(e) = µ
dmR

dµ
,

γi(e) =
1
2
µ
∂

∂µ
lnZi (i = 2, 3) .

(a) Compute β(e), δ(e), γm(e), and γi(e) in the one-loop approximation, using the MS-
renormalization scheme.

HINT: Most of the work has already been done for you in Section 23.2 [pp. 423–426] of
Schwartz.

(b) The running coupling constant in QED can be written as:

α(Q) =
3π

ln(Λ2/Q2)
,

in the one loop approximation. Using the boundary condition α(µ) ≡ e2R/4π, express Λ in
terms of µ and eR. Show that Λ is a renormalization group invariant, that is:

µ
dΛ

dµ
= 0 .

Evaluate Λ numerically.

(c) Find the relation between the MS mass parameter, mR, and the physical electron mass
me (i.e., the pole mass) in the one-loop approximation.


