
The Mathematics of Fermion Mass Diagonalization

S.Y. Choi
1
and Howard E. Haber

2

1Department of Physics and RIPC, Chonbuk National University, Jeonju 561-756, Korea

2Santa Cruz Institute for Particle Physics, University of California, Santa Cruz CA 95064

Abstract

A pedagogical review on the diagonalization of fermion mass in quantum field theory

is given in a coherent and systematic way. This review is an abridged version of a longer

review that is currently in preparation.

1 Introduction

In scalar field theory, the diagonalization of the scalar squared-mass matrix M2 is straight-

forward. First, consider a collection of real spin-0 fields, ϕ̂i(x), where the flavor index i again

labels the distinct scalar fields of the collection. The corresponding free-field Lagrangian is

given by

L = 1
2
∂µϕ̂i ∂

µϕ̂i − 1
2
M2

ijϕ̂iϕ̂j , (1)

where M2
ij is a real symmetric matrix, and there is an implicit sum over repeated indices.

We diagonalize the scalar squared-mass matrix by introducing mass-eigenstates ϕi and the

orthogonal matrix Q such that ϕ̂i = Qijϕj , with M2
ijQikQjℓ = m2

kδkℓ (no sum over k). In

matrix form, the latter reads

QTM2Q = m
2 = diag(m2

1, m
2
2, . . .) . (2)

This is the standard diagonalization problem for a real symmetric matrix. The eigenvalues

m2
k are real.1

Second, consider a collection of complex spin-0 fields, Φ̂i(x). The corresponding free-field

Lagrangian is given by

L = ∂µΦ̂
∗
i ∂

µΦ̂i − (M2)ij Φ̂iΦ̂
∗
j , (3)

1Negative eigenvalues of M2 imply that the naive vacuum is unstable. One should shift the scalar fields

by their vacuum expectation values and check that the resulting scalar squared-matrix possesses only non-

negative eigenvalues.
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where M2 is an hermitian matrix. We diagonalize the scalar squared-mass matrix by in-

troducing mass-eigenstates Φi and the unitary matrix W such that Φ̂i = WikΦk, with

(M2)ijW
∗
ikWjℓ = m2

kδkℓ (no sum over k). In matrix form, the latter reads

W †M2W = M
2 = diag(m2

1, m
2
2, . . .) . (4)

This is the standard diagonalization problem for an hermitian matrix. The eigenvalues m2
k

are real.1

In spin-1/2 fermion field theory, the diagonalization of the fermion mass matrix does not

take any of the above forms. In this paper, we review the linear algebra theory relevant for the

matrix decompositions associated with the charged and neutral spin-1/2 fermion mass matrix

diagonalizations, following Appendix D of Ref. [1]. The diagonalization of the charged Dirac

fermion mass matrix employs the singular value decomposition2 of a complex matrix, which

is treated in Section 2. The diagonalization of the neutral Majorana fermion mass matrix

employs Takagi diagonalization [4, 5] of a complex symmetric matrix, which is treated in

Section 3. The relation between these two different diagonalization procedures is explored

in Section 4. Sections 5 exhibits an explicit singular value decomposition of a complex 2× 2

matrix, and Section 6 performs a Takagi diagonalization of a complex symmetric 2×2 matrix.

Finally, in Appendix A, an alternative algorithm for Takagi diagonalization is given.

2 Singular value decomposition

The diagonalization of the charged Dirac fermion mass matrix requires the singular value

decomposition of an arbitrary complex matrix M .

Theorem: For any complex [or real] n×nmatrixM , unitary [or real orthogonal] matrices

L and R exist such that

LTMR = MD = diag(m1, m2, . . . , mn), (5)

where the mk are real and non-negative. This is called the singular value decomposition of

the matrix M (e.g., see refs. [2, 3]).

In general, the mk are not the eigenvalues of M . Rather, the mk are the singular values

of the general complex matrix M , which are defined to be the non-negative square roots of

the eigenvalues of M †M (or equivalently of MM †). An equivalent definition of the singular

2For a discussion of the singular value decomposition of a complex matrix, see e.g. Refs. [2, 3].
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values can be established as follows. Since M †M is an hermitian non-negative matrix, its

eigenvalues are real and non-negative and its eigenvectors, vk, defined by M †Mvk = m2
kvk,

can be chosen to be orthonormal.3 Consider first the eigenvectors corresponding to the non-

zero eigenvalues of M †M . Then, we define the vectors wk such that Mvk = mkw
∗
k. It follows

that m2
kvk = M †Mvk = mkM

†w∗
k, which yields: M †w∗

k = mkvk. Note that these equations

also imply that MM †w∗
k = m2

kw
∗
k. The orthonormality of the vk implies the orthonormality

of the wk, and vice versa. For example,

δjk = 〈vj|vk〉 =
1

mjmk
〈M †w∗

j |M †w∗
k〉 =

1

mjmk
〈wj|MM †w∗

k〉 =
mk

mj
〈w∗

j |w∗
k〉 , (6)

which yields 〈wk|wj〉 = δjk. If M is a real matrix, then the eigenvectors vk can be chosen to

be real, in which case the corresponding wk are also real.

If vi is an eigenvector of M †M with zero eigenvalue, then 0 = v†iM
†Mvi = 〈Mvi|Mvi〉,

which implies that Mvi = 0. Likewise, if w∗
i is an eigenvector of MM † with zero eigenvalue,

then 0 = wT

i MM †w∗
i = 〈MTwi|MTwi〉∗, which implies that MTwi = 0. Because the eigen-

vectors of M †M [MM †] can be chosen orthonormal, the eigenvectors corresponding to the

zero eigenvalues of M [M †] can be taken to be orthonormal.4 Finally, these eigenvectors

are also orthogonal to the eigenvectors corresponding to the non-zero eigenvalues of M †M

[MM †]. That is, if the indices i and j run over the eigenvectors corresponding to the zero

and non-zero eigenvalues of M †M [MM †], respectively, then

〈vj|vi〉 =
1

mj
〈M †w∗

j |vi〉 =
1

mj
〈w∗

j |Mvi〉 = 0 , (7)

and similarly 〈wj|wi〉 = 0.

Thus, we can define the singular values of a general complex n × n matrix M to be the

simultaneous solutions (with real non-negative mk) of:
5

Mvk = mkw
∗
k , wT

kM = mkv
†
k . (8)

The corresponding vk (wk), normalized to have unit norm, are called the right (left) singular

vectors of M . In particular, the number of linearly independent vk coincides with the number

of linearly independent wk and is equal to n.

3We define the inner product of two vectors to be 〈v|w〉 ≡ v†w. Then, v and w are orthonormal if

〈v|w〉 = 0. The norm of a vector is defined by ‖v ‖ = 〈v|v〉1/2.
4This analysis shows that the number of linearly independent zero eigenvectors of M †M [MM †] with zero

eigenvalue, coincides with the number of linearly independent eigenvectors of M [M †] with zero eigenvalue.
5One can always find a solution to eq. (8) such that the mk are real and non-negative. Given a solution

where mk is complex, we simply write mk = |mk|eiθ and redefine wk → wke
iθ to remove the phase θ.
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Proof of the singular value decomposition theorem: Eqs. (6) and (7) imply that

the right [left] singular vectors can be chosen to be orthonormal. Consequently, the unitary

matrix R [L] can be constructed such that its kth column is given by the right [left] singular

vector vk [wk]. It then follows from eq. (8) that:

wT

kMvℓ = mkδkℓ , (no sum over k). (9)

In matrix form, eq. (9) coincides with eq. (5), and the singular value decomposition is estab-

lished. If M is real, then the right and left singular vectors, vk and wk, can be chosen to be

real, in which case eq. (5) holds for real orthogonal matrices L and R.

The singular values of a complex matrixM are unique (up to ordering), as they correspond

to the eigenvalues of M †M (or equivalently the eigenvalues of MM †). The unitary matrices

L and R are not unique. The matrix R must satisfy

R†M †MR = M2
D , (10)

which follows directly from eq. (5) by computing M †
DMD = M2

D. That is, R is a unitary

matrix that diagonalizes the non-negative definite matrix M †M . Since the eigenvectors

of M †M are orthonormal, each vk corresponding to a non-degenerate eigenvalue of M †M

can be multiplied by an arbitrary phase eiθk . For the case of degenerate eigenvalues, any

orthonormal linear combination of the corresponding eigenvectors is also an eigenvector of

M †M . It follows that within the subspace spanned by the eigenvectors corresponding to

non-degenerate eigenvalues, R is uniquely determined up to multiplication on the right by

an arbitrary diagonal unitary matrix. Within the subspace spanned by the eigenvectors of

M †M corresponding to a degenerate eigenvalue, R is determined up to multiplication on the

right by an arbitrary unitary matrix.

Once R is fixed, L is obtained from eq. (5):

L = (MT)−1R∗MD . (11)

However, if some of the diagonal elements of MD are zero, then L is not uniquely defined.

Writing MD in 2 × 2 block form such that the upper left block is a diagonal matrix with

positive diagonal elements and the other three blocks are equal to the zero matrix of the

appropriate dimensions, it follows that, MD = MDW , where

W =


 1 O

O W0


 , (12)
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W0 is an arbitrary unitary matrix whose dimension is equal to the number of zeros that

appear in the diagonal elements of MD, and 1 and O are respectively the identity matrix

and zero matrix of the appropriate size. Hence, we can multiply both sides of eq. (11) on the

right by W , which means that L is only determined up to multiplication on the right by an

arbitrary unitary matrix whose form is given by eq. (12).6

3 Takagi Diagonalization

A neutral Majorana fermion mass matrix is complex and symmetric. To identify the phys-

ical eigenstates, this matrix must be diagonalized. However, the equation that governs the

identification of the physical fermion states is not the standard unitary similarity transfor-

mation. Instead it is a different diagonalization equation that was discovered by Takagi [4],

and rediscovered many times since [2].7

Theorem: For any complex symmetric n× n matrix M , there exists a unitary matrix Ω

such that:

ΩTM Ω = MD = diag(m1, m2, . . . , mn) , (13)

where the mk are real and non–negative. This is the Takagi diagonalization8 of the complex

symmetric matrix M .

In general, the mk are not the eigenvalues of M . Rather, the mk are the singular values

of the symmetric matrix M . From eq. (13) it follows that:

Ω†M †MΩ = M2
D = diag(m2

1, m
2
2, . . . , m

2
n) . (14)

6Of course, one can reverse the above procedure by first determining the unitary matrix L. Eq. (5)

implies that LTMM †L∗ = M2

D, in which case L is determined up to multiplication on the right by an

arbitrary [diagonal] unitary matrix within the subspace spanned by the eigenvectors corresponding to the

degenerate [non-degenerate] eigenvalues of MM †. Having fixed L, one can obtain R = M−1L∗MD from

eq. (5). As above, R is only determined up to multiplication on the right by a unitary matrix whose form is

given by eq. (12).
7Subsequently, it was recognized in Ref. [3] that the Takagi diagonalization was first established for

nonsingular complex symmetric matrices by Autonne [5].
8In Ref. [2], eq. (13) is called the Takagi factorization of a complex symmetric matrix. We choose to refer

to this as Takagi diagonalization to emphasize and contrast this with the more standard diagonalization of

normal matrices by a unitary similarity transformation. In particular, not all complex symmetric matrices

are diagonalizable by a similarity transformation, whereas complex symmetric matrices are always Takagi-

diagonalizable.
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If all of the singular values mk are non-degenerate, then one can find a solution to eq. (13)

for Ω from eq. (14). This is no longer true if some of the singular values are degenerate.

For example, if M =
(

0 m
m 0

)
, then the singular value |m| is doubly–degenerate, but eq. (14)

yields Ω†Ω = 12×2, which does not specify Ω. That is, in the degenerate case, the physical

fermion states cannot be determined by the diagonalization of M †M . Instead, one must

make direct use of eq. (13). Below, we shall present a constructive method for determining

Ω that is applicable in both the non-degenerate and the degenerate cases.

Eq. (13) can be rewritten as MΩ = Ω∗MD, where the columns of Ω are orthonormal. If

we denote the kth column of Ω by vk, then,

Mvk = mkv
∗
k , (15)

where the mk are the singular values and the vectors vk are normalized to have unit norm.

Following Ref. [8], the vk are called the Takagi vectors of the complex symmetric n × n

matrix M . The Takagi vectors corresponding to non–degenerate non–zero [zero] singular

values are unique up to an overall sign [phase]. Any orthogonal [unitary] linear combination

of Takagi vectors corresponding to a set of degenerate non–zero [zero] singular values is

also a Takagi vector corresponding to the same singular value. Using these results, one can

determine the degree of non–uniqueness of the matrix Ω. For definiteness, we fix an ordering

of the diagonal elements of MD.
9 If the singular values of M are distinct, then the matrix

Ω is uniquely determined up to multiplication by a diagonal matrix whose entries are either

±1 (i.e., a diagonal orthogonal matrix). If there are degeneracies corresponding to non–zero

singular values, then within the degenerate subspace, Ω is unique up to multiplication on

the right by an arbitrary orthogonal matrix. Finally, in the subspace corresponding to zero

singular values, Ω is unique up to multiplication on the right by an arbitrary unitary matrix.

Proof of the Takagi diagonalization. To prove the existence of the Takagi diagonal-

ization of a complex symmetric matrix, it is sufficient to provide an algorithm for constructing

the orthonormal Takagi vectors vk that make up the columns of Ω.10 This is achieved by

rewriting the n× n complex matrix equation Mv = mv∗ [with m real and non–negative] as

a 2n× 2n real matrix equation [6]:11

MR

(
Re v

Im v

)
≡
(

ReM − ImM

− ImM −ReM

) (
Re v

Im v

)
= m

(
Re v

Im v

)
, where m ≥ 0 . (16)

9Permuting the order of the singular values is equivalent to permuting the order of the columns of Ω.
10An alternative algorithm for performing the Takagi diagonaization is given in Appendix A.
11A similar method of proof is outlined in Ref. [2], section 4.4, problem 2 (on pp. 212–213) and section 4.6,

problem 15 (on p. 254).
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Since M = MT, the 2n × 2n matrix MR ≡
(

ReM − ImM
− ImM −ReM

)
is a real symmetric matrix.12

In particular, MR is diagonalizable by a real orthogonal similarity transformation, and its

eigenvalues are real. Moreover, if m is an eigenvalue of MR with eigenvector ( Re v , Im v),

then −m is an eigenvalue of MR with (orthogonal) eigenvector (− Im v , Re v). Hence, MR

has an equal number of positive and negative eigenvalues and an even number of zero eigen-

values.13 Thus, eq. (15) has been converted into an ordinary eigenvalue problem for a real

symmetric matrix. Since m ≥ 0, we solve the eigenvalue problem MRu = mu for the real

eigenvectors u ≡ ( Re v , Im v) corresponding to the non–negative eigenvalues of MR,
14 which

then yields the complex Takagi vectors, v. It is straightforward to prove that the total num-

ber of linearly independent Takagi vectors is equal to n. Simply note that the orthogonality

of ( Re v1 , Im v1) and (− Im v1 , Re v1) with ( Re v2 , Im v2) implies that v†1v2 = 0.

Thus, we have derived a constructive method for obtaining the Takagi vectors vk. If there

are degeneracies, one can always choose the vk in the degenerate subspace to be orthonormal.

The Takagi vectors then make up the columns of the matrix Ω in eq. (13). A numerical

package for performing the Takagi diagonalization of a complex symmetric matrix is given

in ref. [7] (see also ref. [8, 9] for previous numerical approaches to Takagi diagonalization).

4 Relation between Takagi diagonalization and the sin-

gular value decomposition

The Takagi diagonalization is a special case of the singular value decomposition. If the

complex matrix M in eq. (5) is symmetric, M = MT, then the Takagi diagonalization

corresponds to Ω = L = R. In this case, the right and left singular vectors coincide (vk = wk)

and are identified with the Takagi vectors defined in eq. (15). However as previously noted,

the matrix Ω cannot be determined from eq. (14) in cases where there is a degeneracy among

the singular values.15

12The 2n× 2n matrix MR is a real representation of the n× n complex matrix M .
13Note that (− Im v , Re v) corresponds to replacing vk in eq. (15) by ivk. However, for m < 0 these

solutions are not relevant for Takagi diagonalization (where the mk are by definition non–negative). The case

of m = 0 is considered in footnote 14.
14For m = 0, the corresponding vectors (Re v , Im v) and (− Im v , Re v) are two linearly independent

eigenvectors of MR; but these yield only one independent Takagi vector v (since v and iv are linearly

dependent).
15This is in contrast to the singular value decomposition, where R can be determined from eq. (10) modulo

right multiplication by a [diagonal] unitary matrix in the [non-]degenerate subspace and L is then determined

by eq. (11) modulo multiplication on the right by eq. (12).
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For example, one possible singular value decomposition of the matrix M =
(

0 m
m 0

)
[with

m assumed real and positive] can be obtained by choosing R =
(
1 0
0 1

)
and L =

(
0 1
1 0

)
, in

which case LTMR =
(
m 0
0 m

)
= MD. Of course, this is not a Takagi diagonalization because

L 6= R. Since R is only defined modulo the multiplication on the right by an arbitrary 2× 2

unitary matrix O, then at least one singular value decomposition exists that is also a Takagi

diagonalization. For the example under consideration, it is not difficult to deduce the Takagi

diagonalization: ΩTMΩ = MD, where

Ω =
1√
2

(
1 i

1 −i

)
O , (17)

and O is any 2× 2 orthogonal matrix.

Since the Takagi diagonalization is a special case of the singular value decomposition, it

seems plausible that one can prove the former from the latter. This turns out to be correct;

for completeness, we provide the proof below. Our second proof depends on the following

lemma:

Lemma: For any symmetric unitary matrix V , there exists a unitary matrix U such that

V = UTU .

Proof of the Lemma: For any n×n unitary matrix V , there exists an hermitian matrix

H such that V = exp (iH) (this is the polar decomposition of V ). If V = V T then H = HT =

H∗ (since H is hermitian); therefore H is real symmetric. But, any real symmetric matrix can

be diagonalized by an orthogonal transformation. It follows that V can also be diagonalized

by an orthogonal transformation. Since the eigenvalues of any unitary matrix are pure phases,

there exists a real orthogonal matrix Q such that QTV Q = diag (eiθ1 , eiθ2 , . . . , eiθn). Thus,

the unitary matrix,

U = diag (eiθ1/2 , eiθ2/2 , . . . , eiθn/2)QT , (18)

satisfies V = UTU and the lemma is proved. Note that U is unique modulo multiplication

on the left by an arbitrary real orthogonal matrix.

Second Proof of the Takagi diagonalization. Starting from the singular value de-

composition of M , there exist unitary matrices L and R such that M = L∗MDR
†, where MD

is the diagonal matrix of singular values. Since M = MT = R∗MDL
†, we have two different

singular value decompositions for M . However, as noted below eq. (10), R is unique modulo

multiplication on the right by an arbitrary [diagonal] unitary matrix, V , within the [non-

]degenerate subspace. Thus, it follows that a [diagonal] unitary matrix V exists such that
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L = RV . Moreover, V = V T. This is manifestly true within the non-degenerate subspace

where V is diagonal. Within the degenerate subspace, MD is proportional to the identity

matrix so that L∗R† = R∗L†. Inserting L = RV then yields V T = V . Using the Lemma

proved above, there exists a unitary matrix U such that V = UTU . That is,

L = RUTU , (19)

for some unitary matrix U . Moreover, it is now straightforward to show that

MDU
∗ = U∗MD . (20)

To see this, note that within the degenerate subspace, eq. (20) is trivially true since MD is

proportional to the identity matrix. Within the non-degenerate subspace V is diagonal; hence

we may choose U = UT = V 1/2, so that eq. (20) is true since diagonal matrices commute.

Using eqs. (19) and (20), we can write the singular value decomposition of M as follows

M = L∗MDR
† = R∗U †U∗MDR

† = (RUT)∗MDU
∗R† = Ω∗MDΩ

† , (21)

where Ω ≡ RUT is a unitary matrix. Thus the existence of the Takagi diagonalization of an

arbitrary complex symmetric matrix [eq. (13)] is once again proved.

5 Singular value decomposition of a 2 × 2 complex ma-

trix

The singular value decomposition of a general 2× 2 complex matrix can be performed fully

analytically. The result is more involved than the standard diagonalization of a 2×2 hermitian

matrix by a single unitary matrix. Let us consider the complex matrix:

M =

(
a c

c̃ b

)
, (22)

where either c or c̃ is non-vanishing. In general we can parameterize two 2×2 unitary matrices

L and R in Eq. (5) by

L = ULPL =

(
cos θL eiφL sin θL

−e−iφL sin θL cos θL

) (
e−iαL 0

0 e−iβL

)
, (23)

R = URPR =

(
cos θR eiφR sin θR

−e−iφR sin θR cos θR

) (
e−iαR 0

0 e−iβR

)
, (24)

where 0 ≤ θL,R ≤ π/2, 0 ≤ φL,R ≤ 2π and 0 ≤ αL,R, βL,R ≤ 2π. However, as only the sums

αL + αR and βL + βR are fixed, there is a freedom to set αL = αR = α and βL = βR = β

without loss of generality.
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If two singular values m1,2 of the matrix M is non-degenerate, then one can determine

them by taking the positive square root of the non-negative eigenvalues, m2
1,2, of the hermitian

matrix M †M :

m2
1,2 =

1

2

[
|a|2 + |b|2 + |c|2 + |c̃|2 ∓

√
(|a|2 − |b|2 + |c̃|2 − |c|2)2 + 4|ac∗ + b∗c̃|2

]

=
1

2

[
|a|2 + |b|2 + |c|2 + |c̃|2 ∓

√
(|a|2 + |b|2 + |c|2 + |c̃|2)2 − 4|ab− cc̃|2

]
(25)

with 0 ≤ m1 ≤ m2 by definition. Two eigenvalues become identical only when |a| = |b|, |c| =
|c̃| and ac∗+ b∗c̃ = 0 are satisfied, and the smaller one is vanishing when detM = ab− cc̃ = 0.

Explicitly performing the diagonalization of M †M by R and M∗MT by L enables us to

compute the rotation angles, θL,R, and the phases, eiφL,R :

cos θL,R =

√
∆+ |b|2 − |a|2 ± |c̃|2 ∓ |c|2

2∆
and sin θL,R =

√
∆− |b|2 + |a|2 ∓ |c̃|2 ± |c|2

2∆
,(26)

with ∆ = [(|a|2 + |b|2 + |c|2 + |c̃|2)2 − 4|ab− cc̃|2]1/2, which is identical to the difference m2−
m1, and

eiφL =
a∗c̃+ bc∗

|a∗c̃+ bc∗| and eiφR =
a∗c+ bc̃∗

|a∗c+ bc̃∗| . (27)

The final step of the computation is to determine the angles α and β, inserting Eqs. (26) and

(27) into Eq. (5), we end up with:

α =
1

2
arg
[
a(∆ + |b|2 − |a|2)− a(|c|2 + |c̃|2)− 2b∗cc̃

]
,

β =
1

2
arg
[
b(∆ + |b|2 − |a|2) + b(|c|2 + |c̃|2) + 2a∗cc̃

]
. (28)

As pointed out before, the smaller singular value m1 is vanishing for detM = 0. In this case,

the angle α is undefined while all the other angles are uniquely determined.

We end this subsection by treating the case of degenerate (non-zero) singular values,

which arises when |a| = |b|, |c| = |c̃| and ac∗ = −b∗c̃. Reexpressing b in terms of a, c and c̃,

one can cast the mass matrix in the form:

M =

(
|a| eiφa |c| eiφc

|c| eiφc̃ −|a| ei(φc+φc̃−φa)

)

≡
(

eiφa/2 0

0 ei(φc̃−φa/2)

)(
|a| |c|
|c| −|a|

)(
eiφa/2 0

0 ei(φc−φa/2)

)
. (29)

The two 2× 2 diagonal phase matrices in Eq. (29) can be absorbed by redefining the unitary

matrices UL = diag(e−iφa/2, e−i(φc̃−φa/2))O and UR = diag(e−iφa/2, e−i(φc−φa/2))O in terms
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of an orthogonal matrix O. This orthogonal matrix O, along with a diagonal phase matrix

PL = PR = P = diag(i, 1), leads to the diagonalization of the remaining real and symmetric

matrix as

m I2×2 = P TOT

(
|a| |c|
|c| −|a|

)
OP

=

(
i 0

0 1

)(
cos θ − sin θ

sin θ cos θ

)(
|a| |c|
|c| −|a|

)(
cos θ sin θ

− sin θ cos θ

)(
i 0

0 1

)
(30)

with the degenerate singular valuem =
√

|a|2 + |c|2 and the rotation angle θ of the orthogonal

matrix O satisfying

cos θ =

√
1− |a|/m√

2
and sin θ =

√
1 + |a|/m√

2
(31)

We note that in this degenerate case the unitary matrices L and R can be multiplied by any

orthogonal matrix to the right while preserving the relation (30).

6 Takagi diagonalization of a 2 × 2 complex symmetric

matrix

The Takagi diagonalization of a 2 × 2 complex symmetric matrix can be performed analyt-

ically.16 The result is somewhat more complicated than the standard diagonalization of a

2× 2 hermitian matrix by a unitary similarity transformation. Nevertheless, the correspond-

ing analytic formulae for the Takagi diagonalization will prove useful in Appendix C in the

treatment of nearly degenerate states. Consider the complex symmetric matrix:

M =

(
a c

c b

)
, (32)

where c 6= 0 and, without loss of generality, |a| ≤ |b|. We parameterize the 2 × 2 unitary

matrix U in Eq. (13) by [10]:

U = V P =

(
cos θ eiφ sin θ

−e−iφ sin θ cos θ

) (
e−iα 0

0 e−iβ

)
, (33)

where 0 ≤ θ ≤ π/2 and 0 ≤ α , β , φ < 2π. However, we may restrict the angular parameter

space further. Since the normalized Takagi vectors are unique up to an overall sign if the

16The main results of this subsection have been obtained, e.g., in Ref. [7]. Nevertheless, we provide some

of the details here, which include minor improvements over the results previously obtained.
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corresponding singular values are non–degenerate and non–zero,17 one may restrict α and β

to the range 0 ≤ α , β < π without loss of generality. Finally, we may restrict θ to the range

0 ≤ θ ≤ π/4. This range corresponds to one of two possible orderings of the singular values

in the diagonal matrix MD.

Using the transformation (33), we can rewrite eq. (13) as follows:

(
a c

c b

)
V = V ∗

(
σ1 0

0 σ2

)
, (34)

where

σ1 ≡ m1 e
2iα , and σ2 ≡ m2 e

2iβ , (35)

with real and non–negative mk. Multiplying out the matrices in Eq. (34) yields:

σ1 = a− c e−iφtθ = b e−2iφ − c e−iφt−1
θ , (36)

σ2 = b+ c eiφtθ = a e2iφ + c eiφt−1
θ , (37)

where tθ ≡ tan θ. Using either Eq. (36) or (37), one immediately obtains a simple equation

for tan 2θ = 2(t−1
θ − tθ)

−1:

tan 2θ =
2c

b e−iφ − a eiφ
. (38)

Since tan 2θ is real, it follows that bc∗ e−iφ − ac∗ eiφ is real and must be equal to its complex

conjugate. The resulting equation can be solved for e2iφ:

e2iφ =
bc∗ + a∗c

b∗c+ ac∗
, (39)

or equivalently

eiφ =
bc∗ + a∗c

|bc∗ + a∗c| . (40)

The (positive) choice of sign in Eq. (40) follows from the fact that tan 2θ ≥ 0 (since by

assumption, 0 ≤ θ ≤ π/4), which implies 0 ≤ c∗(b e−iφ − a eiφ) = |c|2(|b|2 − |a|2) after

inserting the results of Eq. (40). Since |b| ≥ |a| by assumption, the asserted inequality holds

as required.

17In the case of a zero singular value or a pair of degenerate of singular values, there is more freedom in

defining the Takagi vectors as discussed below Eq. (15). These cases will be treated separately at the end of

this subsection.
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Inserting the result for eiφ back into Eq. (38) yields:

tan 2θ =
2|bc∗ + a∗c|
|b|2 − |a|2 . (41)

One can compute tan θ in terms of tan 2θ for 0 ≤ θ ≤ π/4:

tan θ =
1

tan 2θ

[√
1 + tan2 2θ − 1

]

=
|a|2 − |b|2 +

√
(|b|2 − |a|2)2 + 4|bc∗ + a∗c|2
2|bc∗ + a∗c| , (42)

=
2|bc∗ + a∗c|

|b|2 − |a|2 +
√

(|b|2 − |a|2)2 + 4|bc∗ + a∗c|2
. (43)

Starting from Eqs. (36) and (37), it is now straightforward, using Eqs. (40) and (42), to

compute the squared magnitudes of σk:

m2
k = |σk|2 =

1

2

[
|a|2 + |b|2 + 2|c|2 ∓

√
(|b|2 − |a|2)2 + 4|bc∗ + a∗c|2

]
, (44)

with |σ1| ≤ |σ2|. This ordering of the |σk| is governed by the convention that 0 ≤ θ ≤ π/4

(the opposite ordering would occur for π/4 ≤ θ ≤ π/2). Indeed, one can check explicitly that

the |σk|2 are the eigenvalues of M †M , which provides the more direct way of computing the

singular values.

The final step of the computation is the determination of the angles α and β from Eq. (35).

Inserting Eqs. (40) and (43) into Eqs. (36) and (37), we end up with:

α = 1
2
arg
{
a(|b|2 − |σ1|2)− b∗c2

}
, (45)

β = 1
2
arg
{
b(|σ2|2 − |a|2) + a∗c2

}
. (46)

If det M = ab− c2 = 0 (with M 6= 0) , then there is one singular value which is equal to

zero. In this case, it is easy to verify that σ1 = 0 and |σ2|2 = Tr (M †M) = |a|2 + |b|2 + 2|c|2.
All the results obtained above remain valid, except that α is undefined [since in this case, the

argument of arg in Eq. (45) vanishes]. This corresponds to the fact that for a zero singular

value, the corresponding (normalized) Takagi vector is only unique up to an overall arbitrary

phase [cf. footnote 17].

We provide one illuminating example of the above results. Consider the complex sym-

metric matrix:

M =

(
1 i

i −1

)
. (47)
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The eigenvalues of M are degenerate and equal to zero. However, there is only one linearly

independent eigenvector, which is proportional to (1 , i). Thus, M cannot be diagonalized

by a similarity transformation [2]. In contrast, all complex symmetric matrices are Takagi-

diagonalizable. The singular values of M are 0 and 2 (since these are the non–negative square

roots of the eigenvalues of M †M), which are not degenerate. Thus, all the formulae derived

above apply in this case. One quickly determines that θ = π/4, φ = π/2, β = π/2 and α

is indeterminate (so one is free to choose α = 0). The resulting Takagi diagonalization is

UTMU = diag(0 , 2) with:

U =
1√
2

(
1 i

i 1

) (
1 0

0 −i

)
=

1√
2

(
1 1

i −i

)
. (48)

This example clearly indicates the distinction between the (absolute values of the) eigenvalues

of M and its singular values. It also exhibits the fact that one cannot always perform

a Takagi diagonalization by using the standard techniques for computing eigenvalues and

eigenvectors.18

We end this subsection by treating the case of degenerate (non–zero) singular values,

which arises when bc∗ = −a∗c. Special considerations are required since not all the formulae

derived above are applicable to this case [cf. footnote 17]. The condition bc∗ = −a∗c implies

that |a| = |b|, so that |σ1|2 = |σ2|2 = |b|2 + |c|2. After noting that a/c = −b∗/c∗, Eq. (38)

then yields:

tan 2θ = [Re (b/c) cφ + Im (b/c) sφ]
−1 , (49)

where cφ ≡ cosφ and sφ ≡ sinφ. The reality of tan 2θ imposes no constraint on φ; hence,

φ is indeterminate [a fact that is suggested by Eq. (40)]. The same conclusion also follows

immediately from Eq. (13). Namely, if MD = m12×2, then (UO)TM(UO) = OTMDO = MD

for any real orthogonal matrix O. In particular, φ simply represents the freedom to choose

O [see, e.g., Eq. (54)]. Since φ is indeterminate, Eq. (49) implies that θ is indeterminate as

well. In practice, it is often simplest to choose a convenient value, say φ = 0, which would

then fix θ such that tan 2θ = [Re (b/c)]−1. For pedagogical reasons, we shall keep φ as a free

parameter below.

Naively, it appears that α and β are also indeterminates. After all, the arguments of

arg in both Eqs. (45) and (46) vanish in the degenerate limit. However, this is not a correct

18For real symmetric matrices M , one can always find a real orthogonal V such that V TMV is diagonal. In

this case the Takagi diagonalization is achieved by U = V P , where P is a diagonal matrix whose kk element

is 1 [i] if the corresponding eigenvalue mk is positive (negative). Of course, this procedure fails for complex

symmetric matrices [such as M in Eq. (47)] that are not diagonalizable.
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conclusion, as the derivation of Eqs. (45) and (46) involves a division by |bc∗ + a∗c|, which
vanishes in the degenerate limit. Thus, to determine α and β in the degenerate case, one

must return to Eqs. (36) and (37). A straightforward calculation [which uses Eq. (49)] yields:

σ2

c
= −σ∗

1

c∗
, (50)

which implies

α + β = arg c± π

2
. (51)

Note that separately, α and β depend on the choice of φ (although φ drops out in the sum).

Explicitly, we have

σ1 = −c e−iφ

{√
1 +

[
cφRe (b/c) + sφ Im (b/c)

]2
+ i
[
sφ Re (b/c)− cφ Im (b/c)

]}
, (52)

σ2 = c eiφ
{√

1 +
[
cφ Re (b/c) + sφ Im (b/c)

]2 − i
[
sφRe (b/c)− cφ Im (b/c)

]}
. (53)

One easily verifies that Eq. (50) is satisfied. Moreover, using Eq. (35), α and β are now

separately determined.

We illustrate the above results with the classic case of M =
(
0 1
1 0

)
. In this case M †M =

12×2, so U cannot be deduced by diagonalizing M †M . Setting a = b = 0 and c = 1 in the

above formulae, it follows that θ = π/4, σ1 = −e−iφ and σ2 = eiφ, which yields α = −(φ±π)/2

and β = φ/2. Thus, Eq. (33) yields:

U =
1√
2

(
1 eiφ

−e−iφ 1

) (
±ieiφ/2 0

0 e−iφ/2

)
=

1√
2

(
±ieiφ/2 eiφ/2

∓ie−iφ/2 e−iφ/2

)

=
1√
2

(
i 1

−i 1

) (
± cos(φ/2) sin(φ/2)

∓ sin(φ/2) cos(φ/2)

)
, (54)

which illustrates explicitly that in the degenerate case, U is unique only up to multiplication

on the right by an arbitrary orthogonal matrix.
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Appendix A: Takagi diagonalization revisited

In order to perform the Takagi diagonalization of a complex symmetric matrix M , one must

construct the unitary matrix Ω such that:

ΩTM Ω = MD = diag(m1, m2, . . . , mn) , (A.1)

where the mk are real and non-negative. In this appendix, we provide an alternate algorithm

for constructing Ω. Equivalently, we seek a method for determining the orthonormal singular

vectors vk [eq. (15)] that make up the columns of Ω. The algorithm depends on the following

lemma:

Lemma 1: Consider the eigenvalue problem M †My = m2y, where y is an eigenvector

normalized to unity corresponding to the eigenvalue m2. Let m be the positive square root

of m2. Then, the vector

u = M∗y∗ +my (A.2)

satisfies:

Mu = mu∗ . (A.3)

Proof of Lemma 1: Noting that a symmetric matrix satisfies M † = M∗, and

M †My = M∗My = m2y , (A.4)

eq. (A.3) follows after multiplying eq. (A.2) on the left by M .

Algorithm for Takagi diagonalization: Consider one of the solutions to the eigenvalue

problem M †My1 = m2
1y1, where y1 is normalized to unity. Using Lemma 1, is is easy to

construct the corresponding solution to

Mv1 = m1v
∗
1 , (A.5)

where m1 is the positive square root of m2
1 and v1 is normalized to unity.19 One can then

construct n − 1 orthonormal vectors s1 , s2 , . . . , sn−1, each of which is orthogonal to v1.

Define the unitary matrix V1 whose columns are given by:

V1 = (v1 , s1 , s2 , . . . , sn−1) . (A.6)

Using eq. (A.5) and the fact that M is symmetric, it is straightforward to compute:

V T

1 MV1 =




m1 0

0 M2


 , (A.7)

19If u1 = 0, then My1 = −my∗, and we choose v1 = iy1. If u1 6= 0, then we choose v1 = u1/‖u1‖.
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where the boldface zero above (below) the horizontal dashed line represents n − 1 columns

(rows) of zeros and M2 is a symmetric (n − 1) × (n− 1) matrix whose matrix elements are

given by

(M2)ij = sTi Msj . (A.8)

Thus, we next consider one of the solutions to the eigenvalue problemM †
2M2z2 = m2

2z2, where

z2 is normalized to unity. Using Lemma 1, we again construct the corresponding solution to

M2w2 = m2w
∗
2 , (A.9)

where m2 is the positive square root of m2
2 and w2 is normalized to unity. One can then

construct n − 2 orthonormal vectors t1 , t2 , . . . , tn−2, each of which is orthogonal to w2.

Define the n× n unitary matrix V2 by:

V2 =




1 0 0 · · · 0

0 (w2)1 (t1)1 · · · (tn−2)1

0 (w2)2 (t1)2 · · · (tn−2)2
...

...
...

. . .
...

0 (w2)n−1 (t1)n−1 · · · (tn−2)n−1




. (A.10)

The columns of the matrix product V1V2 are given by:

V1V2 =

(
v1 , v2 ,

n−1∑

k=1

(t1)ksk , . . . ,
n−1∑

k=1

(tn−2)ksk

)
, (A.11)

where

v2 =
n−1∑

k=1

(w2)ksk . (A.12)

Using eq. (A.9) and the fact that M2 is symmetric, it is straightforward to compute:

(V1V2)
TM(V1V2) =




m1 0 0

0 m2 0

0 0 M3




, (A.13)

where the boldface zeros above (below) the horizontal dashed line represent n − 2 columns

(rows) of zeros and M3 is a symmetric (n − 2)× (n− 2) matrix whose matrix elements are

given by

(M3)ij = tTi M2tj . (A.14)

Indeed, eq. (A.13) implies that:

Mv2 = m2v
∗
2 . (A.15)
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Iterating the above procedure produces n unitary matrices V1 , V2 , . . . , Vn, such that

V TMV = diag (m1 , m2 , . . . , mn) , (A.16)

where V ≡ V1V2 · · ·Vn and the mi are the singular values of M . Thus, we have established

the Takagi diagonalization of an arbitrary complex symmetric matrix M . Indeed, the above

procedure succeeds even if some of the singular values are zero and/or degenerate.

Note that singular vectors corresponding to two unequal singular values are orthogonal,

since any symmetric matrix M satisfies:

〈M∗v∗j |vk〉 = 〈v∗j |Mvk〉 . (A.17)

Using eq. (15), it follows that 〈vj|vk〉 = 0 for mj 6= mk. The singular vectors corresponding

to non-degenerate singular values are unique up to multiplication by an overall sign. This

corresponds precisely to the multiplication of Ω on the right by an arbitrary diagonal orthog-

onal matrix (within the non-degenerate subspace).

Application: As a simple example, consider M =
(
0 1
1 0

)
. If we apply the above procedure

to compute the Takagi factorization of M , we may choose y1 =
(
1
0

)
. Computing u1 using

eq. (A.2) and normalizing it yields v1 =
1√
2

(
1
1

)
. Choosing the vector orthogonal to v1 to be

s1 =
(

1
−1

)
determines the matrix V1, and the final step of the iteration yields V2:

V1 =
1√
2

(
1 1

1 −1

)
, V2 =

(
1 0

0 i

)
. (A.18)

Hence, V = V1V2, which is unique up to multiplication on the right by an arbitrary 2 × 2

orthogonal matrix O. We conclude that ΩTMΩ = I2, where Ω = VO, which reproduces the

result of eq. (17).

If the singular values of M are non-degenerate, then the Takagi factorization of M is

particularly simple. In particular, if M †My = m2y, where m2 is a non-degenerate eigenvalue

of M †M , then

My = αy∗ , (A.19)

for some complex number α. That is, My and y∗ are linearly dependent. To prove this, we

examine u defined in eq. (A.2). If u = 0, then My = −my∗ (i.e, α = −m). If u 6= 0, then

multiplying eq. (A.3) on the left by M † yields M †Mu = m2u. It then follows that u = βy

for some non-zero complex number β. Inserting this result back into eq. (A.2), one obtains

eq. (A.19) with α = β∗ −m. From eq. (A.19), it follows that:

m2y = M †My = M∗My = |α|2y . (A.20)
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Hence, we can write: α = meiθ with m real and non-negative, which implies that v = e−iθ/2y

is a singular vector (normalized to unity) that satisfies eq. (15). Thus, in the non-degenerate

case, the columns of Ω consist of the eigenvectors of M †M , normalized to unity with overall

phases chosen such that the singular values are non-negative.
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