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Abstract

In these notes, we demonstrate how to compute the eigenvalue of the
quadratic Casimir operator and the second-order index for an irreducible
representation of a simple Lie algebra. Explicit results for the fundamental
and adjoint representations of su(n), so(n) and sp(n) are given. The rela-
tion of these results to the dual Coxeter number is clarified. Finally, the
dependence on the normalization of the Lie algebra generators is discussed.

I. Introduction

The reader is assumed to be familiar with Dynkin’s techniques for analyzing
the simple Lie algebras. These methods will be briefly summarized below. The
material in these notes and further details can be found in refs. [1–10].

The generators of a Lie group G [which constitute a basis for the corresponding
Lie algebra g] satisfy the commutation relations

[Ta , Tb] = f c
ab Tc , a, b, c = 1, 2, . . . , dG , (1)

where dG is the dimension of the Lie group G, and there is an implicit sum over
repeated indices. In eq. (1), we employ the mathematics convention in which the
Ta are anti-hermitian generators and the f c

ab are real structure constants for a
compact real Lie algebra. The Killing form is defined in terms of a symmetric
metric tensor,

gab = f d
acf

c
bd . (2)

The inverse of gab will be denoted by gab; that is,

gabg
bc = δca .

The adjoint representation consist of dG × dG matrices that represent the Ta.
These matrices, which we denote henceforth by Fa, are defined by:

(Fa)b
c = −f c

ab , (3)
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where b and c label the row and column indices of the Fa. Eq. (2) can then be
rewritten as:

gab = Tr(FaFb) . (4)

The quadratic Casimir operator, C2, is defined by

C2 ≡ gabTaTb . (5)

It is easy to prove that

[C2 , Ta] = 0 , a = 1, 2, . . . , dG .

For a given representation of the Lie algebra g, the generators are represented by
dR×dR matrices Ra. By Schur’s lemma, any operator that commutes with all the
generators of g in an irreducible representation must be a multiple of the identity
operator. Thus, we shall write:

C2(R) = gabRaRb = cR1 , (6)

where 1 is the dR × dR identity matrix, and cR is a number that depends only on
the representation R. The goal of this note is to compute cR for any irreducible
representation of a simple Lie group. In fact, we can immediately prove the
following theorem.

Theorem 1: For the adjoint representation (denoted by R = A) of a simple
Lie group, cA = 1.

Proof: Using the explicit form for the adjoint representation generators given
in eq. (3),

C2(A)c
e ≡ gab(Fa)c

d(Fb)d
e = gabf d

acf
e
bd = cAδ

e
c .

Multiplying both sides of the above equation by δce and summing over c and e,

dGcA = gabf d
acf

c
bd = gabgab = dG ,

and we immediately obtain cA = 1.

II. Root vectors

We choose to work in the Cartan-Weyl basis of g, where the generators consist
of {Hj , Eα}, which satisfy:

[Hj , Hk] = 0 , (7)

[Hj , Eα] = αjEα , (8)

[Eα , E−α] = αjHj , αj ≡ gjkαk , (9)

[Eα , Eβ] =

{

NαβEα+β , if α+ β is a non-zero root ,

0 , if α+ β is not a non-zero root .
(10)
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Here, j = 1, 2, . . . , ℓ defines the rank ℓ of the Lie algebra (and corresponds to
the maximal number of commuting generators), and the root-vectors are real
ℓ-dimensional vectors α = (α1 , α2 , . . . , αℓ) whose components are defined by
eq. (8). Moreover, the ℓ× ℓ block of the metric tensor is given by:

gij =
∑

α∈∆

αiαj , (11)

where ∆ is the set of root vectors, and the off-diagonal blocks, gα,j = gj,α = 0.
The inverse of this metric can be used to define inner products of two-vectors that
live in the ℓ-dimensional root vector space,

(α , β) = gjkαjβk . (12)

It is convenient to choose the normalization of the generators of the Cartan-Weyl
basis such that

gjk = δjk , gα,−α = 1 , (13)

which fixes the form of the metric tensor. In this convention, one can show that:

|Nαβ|
2 = 1

2
(α , α)q(p+ 1) , N−α,−β = −Nα,β ,

where the integers non-negative p and q are determined by the requirement that
β+kα is a root vector for every integer k that satisfies −p ≤ k ≤ q. In particular,

p− q =
2(β , α)

(α , α)
. (14)

Conventionally, one chooses the Nαβ to be real.
We can therefore introduce an ordering of the root vectors by defining α > β

if the first non-zero component of α − β is positive. Since α ∈ ∆ implies that
−α ∈ ∆, we can divide up the roots into two sets: the set of positive roots,
denoted by ∆+, and the set of negative roots, denoted by ∆−. Note that the
quadratic Casimir operator can be written in terms of the Cartan-Weyl basis as:

C2 =

ℓ
∑

j=1

HjHj +
∑

α∈∆+

(EαE−α + E−αEα) . (15)

Finally, we define the simple roots to be a positive root that cannot be expressed
as a sum of two other positive roots. One can prove that there are precisely ℓ
positive roots in a Lie algebra of rank ℓ. The set of simple roots will be denoted
by Π.

Theorem 2: If α, β ∈ Π and α 6= β, then α− β is not a root, and

(α , β) ≤ 0 . (16)
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Proof: If α − β ∈ ∆+, then α = (α − β) + β shows that α is the sum of
two positive roots, which is impossible as α ∈ Π. Likewise, if β −α ∈ ∆+, then
β = (β−α)+α shows that β is the sum of two positive roots, which is impossible
as β ∈ Π. Since α 6= β, it follows that α − β is not a root. This implies that
p = 0 in eq. (14), and it follows that (α , β) ≤ 0.

It is convenient to introduce the ℓ× ℓ Cartan matrix Aij, which is defined by:

Amn ≡
2(αm , αn)

(αm , αm)
, (17)

where m and n label the simple roots. Note that Aii = 2 and Aij ≤ 0 for
i 6= j. There is a one-to-one correspondence between the possible Cartan matrices
and the Dynkin diagrams that characterize the possible simple Lie groups. The
elements of the Cartan matrix are independent of the normalization convention
for the lengths of the roots. The root lengths are in fact fixed in the convention
of eqs. (11) and (13) where gij = δij. In particular [4],

(αi , αi) =





1

2

∑

β∈∆+

{

ℓ
∑

j=1

kβ
j Aij

}
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−1

, αi ∈ Π . (18)

where the positive root β has been expressed in terms of the simple roots via
β =

∑ℓ

j=1
kβ
j αj .

We next introduce the Weyl reflection, which acts on a root vector as follows:

Si(α) ≡ α−
2(α , αi)

(αi , αi)
αi , α ∈ ∆ and αi ∈ Π .

Two immediate properties of Si are:

Si(αi) = −αi , (19)

(Si(α) , β) = (α , Si(β)) . (20)

Additional properties of the Weyl reflection are summarized by the following the-
orem.

Theorem 3: If α ∈ ∆+ and α 6= αi (for some simple root αi ∈ Π), then
Si(α) > 0. Moreover, if Si(α) = Si(β), then α = β.

Proof: Any positive root β ∈ ∆+ can be written as

β = kiαi +
∑

j 6=i

kjαj , ki , kj ≥ 0 .

Then,

Si(α) = α−
2(α , αi)

(αi , αi)
=

[

ki −
2(α , αi)

(αi , αi)

]

αi +
∑

j 6=i

kjαj .
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Noting that (α , αi) ≤ 0 [due to eq. (16)] since α 6= αi by assumption, we
conclude that Si(α) =

∑

j k
′
jαi where k′

j ≥ 0 for all j. Thus, Si(α) > 0. Next, if
Si(α) = Si(β), then α− β = καi, where

κ =
2(α− β , αi)

(αi , αi)
.

Inserting α − β = καi into the expression above yields καi = 2καi, and we
conclude that κ = 0 or α = β.

One consequence of the theorem just proved is that Si maps the set of positive
roots excluding αi into itself, where the map is one-to-one and onto. Thus, if we
define

δ ≡ 1

2

∑

α∈∆+

α , (21)

then using eq. (19),

Si(δ) =
1

2
Si

(

αi +
∑

j 6=i

αj

)

= 1

2

(

−αi +
∑

j 6=i

αj

)

= δ −αi . (22)

Hence, using eq. (20),
(Si(δ) , αi) = (δ , Si(αi)) .

Using eqs. (19) and (22), it follows that

(δ −αi , αi) = −(δ , αi) .

Rearranging the above result then yields:

2(δ , αi)

(αi , αi)
= 1 . (23)

Finally, we introduce the dual root or co-root of α ∈ ∆,

α∨ ≡
2α

(α , α)
. (24)

In terms of the dual root, the Cartan matrix can be defined as

Amn = (α∨
m , αn) ,

and the Weyl reflection acts on a root vector as follows:

Si(α) = α− (α , α∨
i )αi .

Eq. (23) then can be rewritten as:

(δ , α∨
i ) = 1 .
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III. Irreducible representations and weights

In a unitary representation of a simple Lie algebra, the representation matrices
of the Cartan-Weyl generators satisfy H†

j = Hj and E†
α = E−α. To construct a

particular representation, one determines the basis vectors of the representation
space, denoted collectively by |m〉. These vectors are chosen to be the simultane-
ous eigenvectors of the commuting Hermitian Hj,

Hj |m〉 = mj |m〉 .

The components of the ℓ-dimensional vector m = (m1 , m2 , . . . , mℓ) are the
corresponding eigenvalues of Hj. The ℓ-dimensional vector space in which the m

reside is called the vector space of weight vectors. We can formulate a ordering
of vectors of the weight space by introducing the rule that m > n if the first
non-zero component of m − n is positive. An important theorem in Lie algebra
representation theory states that for a given irreducible representation, the highest
weight |m〉 is non-degenerate and uniquely fixes the representation. Moreover,

Eα |M〉 = 0 , for all α ∈ ∆+ . (25)

An irreducible representation of a simple Lie algebra can also be specified
by their Dynkin labels. Given a conventional ordered list of the simple roots,
{α1 , α2 , . . . , αℓ}, of g, one can define the integers:

ni ≡
2(M , αi)

(αi , αi)
= (M , α∨

i ) , i = 1, 2, . . . , ℓ . (26)

One can prove that the ni are non-negative integers. Thus, an irreducible repre-
sentation can be identified by the order pair (n1 , n2 , . . . , nℓ), where the ni are
called the Dynkin labels of the irreducible representation. Since M is a vector that
lives in an ℓ-dimensional space, it can be expanded in terms of the root vectors,

M =

ℓ
∑

k=1

pkαk . (27)

Inserting this expansion into eq. (26) and using eq. (17) yields

nj =
ℓ
∑

k=1

Ajkpk . (28)

Inverting this result gives:

pk =
ℓ
∑

j=1

(A−1)kjnj . (29)
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IV. A general formula for cR and the second-order index I2(R)

In a representation R,

C2(R) |M 〉 = cR |M 〉 .

To compute cR, we employ eq. (15) to obtain:

C2(R) |M〉 = M 2 |m〉+
∑

α∈∆+

(EαE−α + E−αEα) |M〉

= M 2 |m〉+
∑

α∈∆+

[Eα , E−α] |M〉

= M 2 |m〉+
∑

α∈∆+

α·M |m〉 .

In terms of δ ≡ 1

2

∑

α∈∆+
α, which is defined in eq. (21), we can write:

C2(R) |M 〉 = (M , M + 2δ) |M〉 (30)

Using eq. (27),

(M , M + 2δ) |M〉) =

(

ℓ
∑

k=1

pkαk , M + 2δ

)

= 1

2

ℓ
∑

k=1

pk [(αk , αk) (nk + 2)] .

after making use of eq. (23). Finally, inserting eq. (29) for pk,

cR = 1

2

ℓ
∑

j=1

ℓ
∑

k=1

(αk , αk)(nk + 2)(A−1)kjnj (31)

Eq. (31) is our basic result, which has also been obtained in ref. [9]. This is
sometimes rewritten in terms of the symmetrized Cartan matrix, which is defined
by [6]:

Gij ≡
2

(αj , αj)
Aij =

4(αi , αj)

(αi , αi)(αj , αj)
= (α∨

i , α
∨
j ) . (32)

The inverse of the symmetrized Cartan matrix, which we shall denote by Gij is
therefore given by:

Gij = 1

2
(αi , αi)A

−1
ij . (33)
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One can immediately check that GijG
jk = δki as required. Hence, eq. (31) can be

rewritten as [11]:

cR =

ℓ
∑

j=1

ℓ
∑

k=1

(nk + 2)Gkjnj . (34)

For any irreducible representation,

Tr(RaRb) = I2(R)gab , (35)

where I2(R) is called the second-order index of the representation R. By virtue
of eq. (4), the second-order index of the adjoint representation is I2(A) = 1. For
an arbitrary irreducible representation R, taking the trace of eq. (6) yields:

cR =
I2(R)dG

dR
(36)

where dG is the dimension of the Lie group (which is also equal to the number
of generators) and dR is the dimension of the representation. For the adjoint
representation (R = A), we have dR = dG, in which case we obtain the expected
result,

cA = I2(A) = 1 . (37)

V. The quadratic Casimir operator and second-order index for irre-
ducible representations of su(n), so(n) and sp(n)

We begin by listing the inverse Cartan matrices for su(ℓ+1), so(2ℓ), so(2ℓ+1)
and sp(ℓ), where ℓ is the rank of the corresponding Lie algebras [4].

su(ℓ+ 1) (ℓ ≥ 1) :

A−1 =
1

ℓ+ 1









































ℓ ℓ− 1 ℓ− 2 ℓ− 3 · · · 3 2 1

ℓ− 1 2(ℓ− 1) 2(ℓ− 2) 2(ℓ− 3) · · · 6 4 2

ℓ− 2 2(ℓ− 2) 2(ℓ− 2) 3(ℓ− 3) · · · 9 6 3

ℓ− 3 2(ℓ− 3) 3(ℓ− 3) 4(ℓ− 3) · · · 12 8 4

...
...

...
...

. . .
...

...
...

3 6 9 12 · · · 3(ℓ− 2) 2(ℓ− 2) ℓ− 2

2 4 6 8 · · · 2(ℓ− 2) 2(ℓ− 1) ℓ− 1

1 2 3 4 · · · ℓ− 2 ℓ− 1 ℓ









































,
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so(2ℓ+ 1) (ℓ ≥ 4) : A−1 =









































1 1 1 1 · · · 1 1 1

1 2 2 2 · · · 2 2 2

1 2 3 3 · · · 3 3 3

1 2 3 4 · · · 4 4 4

...
...

...
...

. . .
...

...
...

1 2 3 4 · · · ℓ− 2 ℓ− 2 1

2
(ℓ− 2)

1 2 3 4 · · · ℓ− 2 ℓ− 1 1

2
(ℓ− 1)

1 2 3 4 · · · ℓ− 2 ℓ− 1 1

2
ℓ









































,

so(2ℓ) (ℓ ≥ 4) : A−1 =













































1 1 1 1 · · · 1 1

2

1

2

1 2 2 2 · · · 2 1 1

1 2 3 3 · · · 3 3

2

3

2

1 2 3 4 · · · 4 2 2

...
...

...
...

. . .
...

...
...

1 2 3 4 · · · ℓ− 2 1

2
(ℓ− 2) 1

2
(ℓ− 2)

1

2
1 3

2
2 · · · 1

2
(ℓ− 2) 1

4
ℓ 1

4
(ℓ− 2)

1

2
1 3

2
2 · · · 1

2
(ℓ− 2) 1

4
(ℓ− 2) 1

4
ℓ













































,

sp(ℓ) (ℓ ≥ 4) : A−1 =









































1 1 1 1 · · · 1 1 1

1 2 2 2 · · · 2 2 2

1 2 3 3 · · · 3 3 3

1 2 3 4 · · · 4 4 4

...
...

...
...

. . .
...

...
...

1 2 3 4 · · · ℓ− 2 ℓ− 2 ℓ− 2

1 2 3 4 · · · ℓ− 2 ℓ− 1 ℓ− 1

1

2
1 3

2
2 · · · 1

2
(ℓ− 2) 1

2
(ℓ− 1) 1

2
ℓ









































.
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For the cases of ℓ = 2 and ℓ = 3, we have:

sp(2) : A−1 =

(

1 1

1

2
1

)

, so(4) : A−1 =

(

1

2
0

0 1

2

)

, so(5) : A−1 =

(

1 1

2

1 1

)

,

sp(3) : A−1 =









1 1 1

1 2 2

1

2
1 3

2









, so(6) : A−1 =









1 1

2

1

2

1

2

3

4

1

4

1

2

1

4

3

4









, so(7) : A−1 =









1 1 1

2

1 2 1

1 2 3

2









.

We also need the length of each simple root. In the Cartan-Weyl basis intro-
duced above, the length of each simple root is fixed according to eq. (18). These
can be evaluated explicitly, and the final results are given by [4]:

su(ℓ+ 1) : (αk , αk) =
1

ℓ+ 1
, k = 1, 2, . . . , ℓ , (38)

so(2ℓ+ 1) : (αk , αk) =















1

2ℓ− 1
, for k = 1, 2, . . . , ℓ− 1 ,

1

2(2ℓ− 1)
, for k = ℓ ,

(39)

so(2ℓ) : (αk , αk) =
1

2(ℓ− 1)
, for k = 1, 2, . . . , ℓ , (ℓ 6= 1) , (40)

sp(ℓ) : (αk , αk) =















1

2(ℓ+ 1)
, for k = 1, 2, . . . , ℓ− 1 ,

1

ℓ+ 1
, for k = ℓ ,

(41)

Finally, we need to identify specific irreducible representations of su(n), so(n)
and sp(n) We define the fundamental (or defining) representation of the corre-
sponding groups to be the n-dimensional matrix representation that defines the
groups SU(n) and SO(n), respectively, and the 2n-dimensional representation that
defines the group Sp(n).1 In terms of the Dynkin labels, n ≡ (n1, n2, . . . , nℓ), the
fundamental representations are given by:

n = (1, 0, 0, . . . , 0) ,

for su(ℓ + 1) (for ℓ ≥ 1), so(2ℓ + 1) (for ℓ ≥ 2), so(2ℓ) (for ℓ ≥ 3), and sp(ℓ)
(for ℓ ≥ 1). For the case of so(3), n = 2 for the fundamental three-dimensional

1The reader is warned that what we call Sp(n) is often called Sp(2n) in the literature.
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representation (since n = 1 is the two-dimensional spinor representation). For
the case of so(4), n = (1, 1) for the fundamental four-dimensional representation
(since n = (1, 0) and n = (0, 1) are two inequivalent two-dimensional spinor
representations).

Eq. (31) then yields:

su(ℓ+ 1) : cF =
1

2(ℓ+ 1)

[

(A−1)11 + 2
ℓ
∑

k=1

(A−1)k1

]

=
ℓ(ℓ+ 2)

2(ℓ+ 1)2
, ℓ ≥ 1 ,

so(2ℓ+ 1) : cF =
1

2(2ℓ− 1)

[

(A−1)11 + 2
ℓ−1
∑

k=1

(A−1)k1 + (A−1)ℓ1

]

=
ℓ

2ℓ− 1
, ℓ ≥ 2 ,

so(2ℓ) : cF =
1

4(ℓ− 1)

[

(A−1)11 + 2

ℓ
∑

k=1

(A−1)k1

]

=
2ℓ− 1

4(ℓ− 1)
, ℓ ≥ 3 ,

sp(ℓ) : cF =
1

4(ℓ+ 1)

[

(A−1)11 + 2
ℓ−1
∑

k=1

(A−1)k1 + 4(A−1)ℓ1

]

=
2ℓ+ 1

4(ℓ+ 1)
, ℓ ≥ 1 .

The above results can be rewritten as:

su(n) : cF =
n2 − 1

2n2
, (n ≥ 3) , (42)

so(n) : cF =
n− 1

2(n− 2)
, (n ≥ 5) , (43)

sp(n) : cF =
2n+ 1

4(n+ 1)
, (n ≥ 5) . (44)

We note that the dimensions of the fundamental representations (dF ) and the
adjoint representations (dG) [the latter is equal to the number of generators] of
the simple classical Lie algebras are given by:

su(n) : dF = n , dG = n2 − 1 , (45)

so(n) : dF = n , dG = 1

2
n(n− 1) , (46)

sp(n) : dF = 2n , dG = n(2n+ 1) . (47)

Using eq. (36), one obtains the second-order index of the fundamental repre-
sentation:

su(n) : I2(F ) =
1

2n
, (n ≥ 2) , (48)

so(n) : I2(F ) =
1

n− 2
, (n ≥ 5) , (49)

sp(n) : I2(F ) =
1

2(n+ 1)
, (n ≥ 1) . (50)

11



We now examine the adjoint representation and check that Theorem 1 is sat-
isfied. The Dynkin labels of the adjoint representation are given by:

su(n) : n = (1 , 0 , 0 , . . . , 0 , 0 , 1) , (n ≥ 3) , (51)

so(n) : n = (0 , 1 , 0 , 0 , . . . , 0 , 0) , (n ≥ 5) . (52)

sp(n) : n = (2 , 0 , 0 , 0 , . . . , 0 , 0) , (n ≥ 1) . (53)

For su(2), the adjoint representation is given by n = 2. For so(n), the adjoint
representation corresponds to the antisymmetric part of the Kronecker product
of n ⊗ n. However, the cases of n ≤ 6 must be treated separately, as n = (0, 1)
is a spinor representation of so(4) and of so(5), whereas n = (0, 1, 0) is a spinor
representation of so(6).2 For so(3), the fundamental and adjoint representations
coincide and correspond to n = 2. For so(4), which is semi-simple, the adjoint
representation is not irreducible. For so(5), the adjoint representation is given by
n = (0, 2). For so(6), the adjoint representation is given by n = (0, 1, 1).

We now evaluate the quadratic Casimir operator using eq. (31).

su(ℓ+ 1) : cA =
1

2(ℓ+ 1)

[

(A−1)11 + (A−1)ℓ1 + (A−1)1ℓ + (A−1)ℓℓ + 2
ℓ
∑

k=1

[(A−1)k1 + (A−1)kℓ]

]

= 1 , ℓ ≥ 2 ,

so(2ℓ+ 1) : cA =
1

2(2ℓ− 1)

[

(A−1)22 + 2
ℓ−1
∑

k=1

(A−1)k2 + (A−1)ℓ2

]

= 1 , ℓ ≥ 3 .

so(2ℓ) : cA =
1

4(ℓ− 1)

[

(A−1)22 + 2

ℓ
∑

k=1

(A−1)k2

]

= 1 , ℓ ≥ 4 .

sp(ℓ) : cA =
1

ℓ+ 1

[

(A−1)11 +

ℓ−1
∑

k=1

(A−1)k1 + 2(A−1)ℓ1

]

= 1 , ℓ ≥ 1 .

I have also checked that the cases of su(2), so(3), so(5) and so(6) yield cA = 1.

VI. The dual Coxeter number

We now introduce the maximal weight of the adjoint representation, denoted
by θ, which also coincides with the maximal positive root. One of the basic
theorems of Lie algebras states that for a simple Lie algebra, there are at most

2In general, for n odd there is one fundamental irreducible spinor representation of so(n)
given by n = (0 , 0 , . . . , 0 , 1). For n even there are two fundamental irreducible spinor repre-
sentations of so(n) given by n = (0 , 0 , . . . , 0 , 1 , 0) and n = (0 , 0 , . . . , 0 , 0 , 1).
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two roots of different length, called long roots and short roots. As θ is the maximal
root, it must be a long root. We can expand θ in terms of the simple roots

θ =

ℓ
∑

k=1

akαk. (54)

The Coxeter number of a simple Lie algebra is defined as [6]:

h ≡ 1 +
ℓ
∑

k=1

ak .

Likewise, we can expand θ∨ ≡ 2θ/(θ , θ) in terms of the dual roots,

θ∨ =

ℓ
∑

k=1

a∨kα
∨
k ,

where

a∨k =
(αk ,αk)

(θ , θ)
ak ,

after using eqs. (24) and (54). The dual Coxeter number is then defined as [6]:

g ≡ 1 +
ℓ
∑

k=1

a∨k = 1 +
1

(θ , θ)

ℓ
∑

k=1

(αk , αk)ak . (55)

For a simply-laced Lie algebra (defined as a simple Lie algebra whose non-zero
roots are all of equal length), we have g = h.

The Dynkin labels for θ,

nθ
j ≡

2(θ , αj)

(αj , αj)
,

are given explicitly in eqs. (51)–(53) for su(n), so(n) and sp(n), respectively.
Following eqs. (28) and (29), we can write

nθ
k =

ℓ
∑

j=1

Akjaj , ak =
ℓ
∑

j=1

(A−1)kjn
θ
j . (56)

It follows that:

(θ , θ) =

ℓ
∑

j=1

ℓ
∑

k=1

ajak(αk , αj) =
1

2

ℓ
∑

j=1

ℓ
∑

k=1

ajak(αk , αk)Akj

= 1

2

ℓ
∑

k=1

ak(αk , αk)n
θ
k = 1

2

ℓ
∑

j=1

ℓ
∑

k=1

(αk , αk)n
θ
k(A

−1)kjn
θ
j .
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Using eqs. (55) and (56), the dual Coxeter number can be rewritten as:

g = 1 +
1

(θ , θ)

ℓ
∑

j=1

ℓ
∑

k=1

(αk , αk)(A
−1)kjn

θ
j .

Since θ is the maximal weight of the adjoint representation, it follows from eq. (31)
that

cA = 1

2

ℓ
∑

j=1

ℓ
∑

k=1

(αk , αk)(n
θ
k + 2)(A−1)kjn

θ
j = (θ , θ) + (g − 1)(θ , θ) ,

which reduces to
cA = g(θ , θ) .

Since cA = 1, we conclude that:

g =
1

(θ , θ)
=



















n , for su(n) , (n ≥ 2) ,

2 , for so(3) ,

n− 2 , for so(n) , (n ≥ 4) ,

n + 1 , for sp(n) , (n ≥ 1) ,

(57)

after using eqs. (38)–(41) for the length of the long root.
The second-order index and the eigenvalue of the Casimir operator of the

fundamental representation are related very simply to the dual Coxeter number.
Eqs. (48)–(50) yield:

su(n) : I2(F ) =
1

2g
, (n ≥ 2) , (58)

so(n) : I2(F ) =
1

g
, (n ≥ 5) , (59)

sp(n) : I2(F ) =
1

2g
, (n ≥ 1) , (60)

and eq. (36) then gives:

CF =
gGI2(F )

dF
.

For completeness, we provide an explicit computation of (θ , θ). Multiplying
eq. (11) by gij and summing over i and j yields,

∑

α∈∆

(α , α) = ℓ , (61)
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where ℓ is the rank of the group. This result can be used to compute (θ , θ) as
follows. All non-zero roots of a simply-laced Lie algebra are of equal length. By
definition, the maximal root θ is regarded as a long root. Since there are dG − ℓ
non-zero roots, it follows from eq. (61) that ℓ = (dG − ℓ)(θ , θ), or

(θ , θ) =
ℓ

dG − ℓ
, for g = su(ℓ+ 1) [ℓ ≥ 1] and so(2ℓ) [ℓ ≥ 2] .

For so(2ℓ+1) [ℓ ≥ 2], there are ℓ− 1 long roots and one short root. We use Weyl
reflections to generate the remaining non-zero roots, which results in (ℓ− 1)(dG−
ℓ)/ℓ long roots and (dG − ℓ)/ℓ short roots. For sp(ℓ), there is one long root and
ℓ − 1 short roots. We use Weyl reflections to generate the remaining non-zero
roots, which results in (dG − ℓ)/ℓ long roots and (ℓ − 1)(dG − ℓ)/ℓ short roots.
Hence, for so(2ℓ+ 1) [ℓ ≥ 2], eq. (61) yields:

ℓ =

[

(ℓ− 1)(dG − ℓ)

ℓ
+

dG − ℓ

2ℓ

]

(θ , θ) =
(2ℓ− 1)(dG − ℓ)

2ℓ
(θ , θ) ,

and for sp(ℓ), eq. (61) yields:

ℓ =

[

dG − ℓ

ℓ
+

(ℓ− 1)(dG − ℓ)

2ℓ

]

(θ , θ) =
(ℓ+ 1)(dG − ℓ)

2ℓ
(θ , θ) .

Therefore,

(θ , θ) =
2ℓ2

dG − ℓ
×















1

2ℓ− 1
, for g = so(2ℓ+ 1) , (ℓ ≥ 2) ,

1

ℓ+ 1
, for g = sp(ℓ) , (ℓ ≥ 1) .

Using eqs. (45)–(47), we end up with:

(θ , θ) =



























































1

n
, for su(n) , (n ≥ 2) ,

1

2
, for so(3) ,

1

n− 2
, for so(n) , (n ≥ 4) ,

1

n+ 1
, for sp(n) , (n ≥ 1) ,

in agreement with eq. (57).
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VII. An alternative normalization convention

We highlight two implicit normalization conditions employed in this note.
First, gab = Tr(FaFb) defines the Killing metric, which is normalized by a co-
efficient of 1. Second, the roots are normalized by

∑

α

αiαj = gij = δij .

It is convenient to alter these conventions as follows. First, we redefine [6, 10]

gab =
1

gη
Tr(FaFb) , (62)

where g is the dual Coxeter number and η is an additional rescaling factor. In
order to be consistent with eq. (11), we shall simultaneously rescale the roots so
that

1

gη

∑

α

αiαj = gij . (63)

Multiplying by gij and summing over i and j yields:
∑

α∈∆

(α , α) = gηℓ ,

which replaces eq. (61) and fixes the length of the root vectors. We can identify:

η = (θ , θ) ,

since gη = g(θ , θ) = 1 returns us to our previous conventions [cf. eq. (57)].
This rescaling can be viewed in two equivalent ways. As presented above, it

can be viewed simply as a rescaling of the definition of the Killing metric. Note
that in this interpretation, the eigenvalue of the Casimir operator and the second-
order index are independent of the choice of basis for the generators, since the
definitions given by eqs. (5) and (35) are covariant with respect to their indices.
That is, rescaling the Lie algebra generators automatically rescales the Killing
metric, leaving the eigenvalue of the Casimir operator and the second-order index
invariant. However, we can also view eq. (62) as a rescaling of the definition of
the Lie algebra generators, with gab held fixed. In practice, one chooses the basis
for the Lie algebra generators such that gab = δab, where the coefficient in front
of the Kronecker delta is held fixed at 1. In this interpretation, the eigenvalue of
the Casimir operator and the second-order index depend on the normalization of
the Lie algebra generators.3 Of course, both interpretations are equally valid.

3In ref. [9], this viewpoint is described on the top of p. 302 as follows. “If all generators in a
given simple Lie algebra are multiplied with a common factor λ, the structure constants f c

ab are
multiplied with λ and the Killing form is multiplied with λ2. For convenience, the inner product
in the root space [cf. eq. (12)] is redefined to be Euclidean again, namely, the metric tensor in
the root space is δij instead of gij .”
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The symmetrized Cartan matrix defined in eq. (32) also depends on the overall
scale of the roots. However, we shall simply redefine it as:

Gij =
(θ , θ)

(αj , αj)
Aij . (64)

Note that eq. (64) is independent of the convention for the normalization of the
length of the roots. The inverse of the redefined symmetrized Cartan matrix is
given by

Gij =
(αi , αi)

(θ , θ)
A−1

ij .

This matrix is called the quadratic form matrix in ref. [6]. The explicit forms of
the Gij for the simple Lie groups are given in refs. [3, 6].

As noted above, the eigenvalue of the quadratic Casimir operator and the
second-order index are rescaled by ηg, and we shall denote the corresponding
rescaled quantities by capital letters,

CR ≡ ηgcR , TR ≡ ηgI2(R) . (65)

In particular, eq. (37) implies that:

CA = TA = ηg . (66)

If we multiply eq. (34) by ηg, and rescale G−1 as indicated above, we obtain [10]:

CR = ηgcR = 1

2
η

ℓ
∑

j=1

ℓ
∑

k=1

(ai + 2)Gijaj , (67)

where eq. (57) has been used to convert to the new definition of G−1.
It is often convenient to choose the squared-length of the longest root to be

equal to 2. That is,4

η ≡ (θ , θ) = 2 . (68)

In this convention, our original definition of the symmetrized Cartan matrix de-
fined in eq. (32) and the rescaled version defined in eq. (64) are of the same form.
Consequently, when η = 2, the form of eqs. (34) and (67) coincide since both cR
and Gij scale in the same way.

As a consequence of eqs. (36), (65) and (66),

CF =
TFdG
dF

, CA = TA =
TF

I2(F )
.

4This convention is common in the mathematics literature. It is motivated by the observation
that in this convention, I2(R) is always an integer.
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It then follows that:

su(n) : CF = TF

(

n2 − 1

n

)

, CA = TA = 2nTF , (n ≥ 2) , (69)

so(n) : CF = 1

2
TF (n− 1) , CA = TA = TF (n− 2) , (n ≥ 5) . (70)

sp(n) : CF = 1

2
TF (2n+ 1) , CA = TA = 2TF (n + 1) , (n ≥ 1) . (71)

Comparing the above results with eqs. (57) and (66), it follows that the normal-
ization of the Lie algebra generators are fixed according to [11]:

su(n) : TF = 1

2
η , (n ≥ 2) ,

so(n) : TF = η , (n ≥ 5) ,

sp(n) : TF = 1

2
η , (n ≥ 1) .

Of course, the above results are consistent with eqs. (58)–(60), in light of eq. (65).
As noted in eq. (68) and in footnote 4, η = 2 is the common choice in the math-

ematics literature. In contrast, η = 1 is more typically employed in the physics
literature, especially in the case of the su(n) Lie algebra. Although a universal
choice for η is desirable, it is not required. As a result, it is not uncommon to
see different conventions for η applied to different simple Lie algebras [11]. For
example, the results of eqs. (69)–(71) agree with Table 3 of ref. [5], where TF = 1
has been taken for all su(n), so(n) and sp(n) generators. This choice requires a
different choice of η for so(n) as compared to su(n) and sp(n). It is also common
for physicists to choose TF = 1

2
for su(n) and sp(n) and TF = 2 for so(n), which

again requires a different choice of η for so(n) as compared to su(n) and sp(n).
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