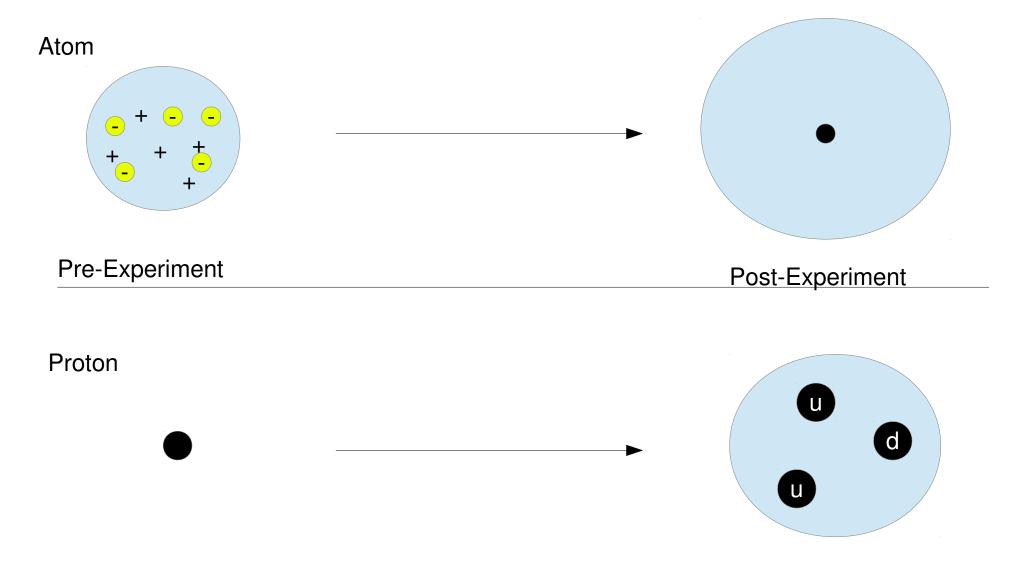
The Quark Model and SU(3)

Peyton Rose

10 June 2013 Physics 251

Scattering Experiments at SLAC in the 1960s suggested that pointlike particles exist in the proton

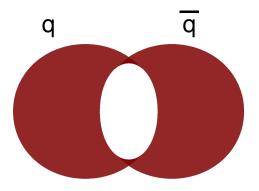


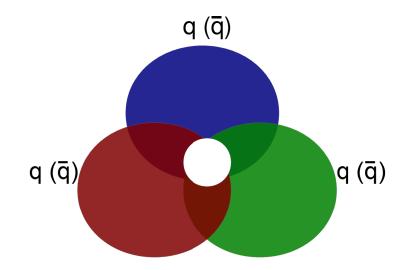
Six quarks and six anti-quarks have been discovered

	d	u	s	С	b	t
Q – electric charge	$-\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$	$+\frac{2}{3}$
I - isospin	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	0
I_z – isospin z-component	$-\frac{1}{2}$	$+\frac{1}{2}$	0	0	0	0
$S-\mathrm{strangeness}$	0	0	-1	0	0	0
$C - \mathrm{charm}$	0	0	0	+1	0	0
B-bottomness	0	0	0	0	-1	0
T-topness	0	0	0	0	0	+1

J. Beringer et al.(PDG), PR **D86**, 010001 (2012) (http://pdg.lbl.gov)

An additional quantum number – color – restricts combinations of quarks. In nature, we observe qq and qqq





The free quark Lagrangian density has a SU(n) symmetry for n quarks*

$L = \bar{q}^{a} i \gamma^{\mu} \partial_{\mu} q_{a} - \bar{q}^{a} m q_{a}$

* with identical masses

First, let's consider a model with only up and down quarks.

In this case, the relevant quantum number is isospin with an SU(2) symmetry.

Generators of the 2-dimensional representation of SU(2):

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Commutation Relations:

Raising/Lowering Operators

$$\left[\frac{1}{2}\sigma_{i},\frac{1}{2}\sigma_{j}\right]=i\epsilon_{ijk}\left(\frac{1}{2}\sigma_{k}\right)$$

$$\sigma_{\pm} = \frac{1}{2} (\sigma_1 \pm i \sigma_2)$$

There are two eigenstates of
$$\frac{1}{2}\sigma_3$$

 $\lambda_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\lambda_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
 $\frac{1}{2}\sigma_3\lambda_1 = \frac{1}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{2}\lambda_1$, $\frac{1}{2}\sigma_3\lambda_2 = \frac{1}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{-1}{2}\lambda_2$

In the 2 representation, u corresponds to λ_1 and d corresponds to λ_2 In the 2^{*} representation, \overline{d} corresponds to λ_1 and \overline{u} corresponds to λ_2

1

Meson states are formed from $2\otimes 2^*$

 $2 \otimes 2^* = 3 \oplus 1 \rightarrow We expect 4 meson states$

Let $\psi = \begin{pmatrix} u \\ d \end{pmatrix}$, $\overline{\psi} = \begin{pmatrix} -\overline{d} \\ \overline{u} \end{pmatrix}$ Single State: $s = \overline{\psi}_{\alpha} \psi^{\alpha}$ $s \propto (u \overline{u} + d \overline{d})$ Triplet State: $v_k = \overline{\psi}_i (\sigma^k)^i_{\ i} \psi^j$ $v_1 \propto (\bar{u}d + \bar{d}u)$ $v_2 \propto (\bar{u} d - \bar{d} u)$ $v_3 \propto (\overline{d} d - \overline{u} u)$

With appropriate linear combinations and normalization, we recover the pions ...

$$\pi^+ = u \bar{d}$$
, $\pi^- = \bar{u} d$, $\pi^0 = \frac{1}{\sqrt{2}} (u \bar{u} - d \bar{d})$

...which fit into a 3-dim representation of SU(2)

$$\pi^{+} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} , \pi^{-} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} , \pi^{0} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

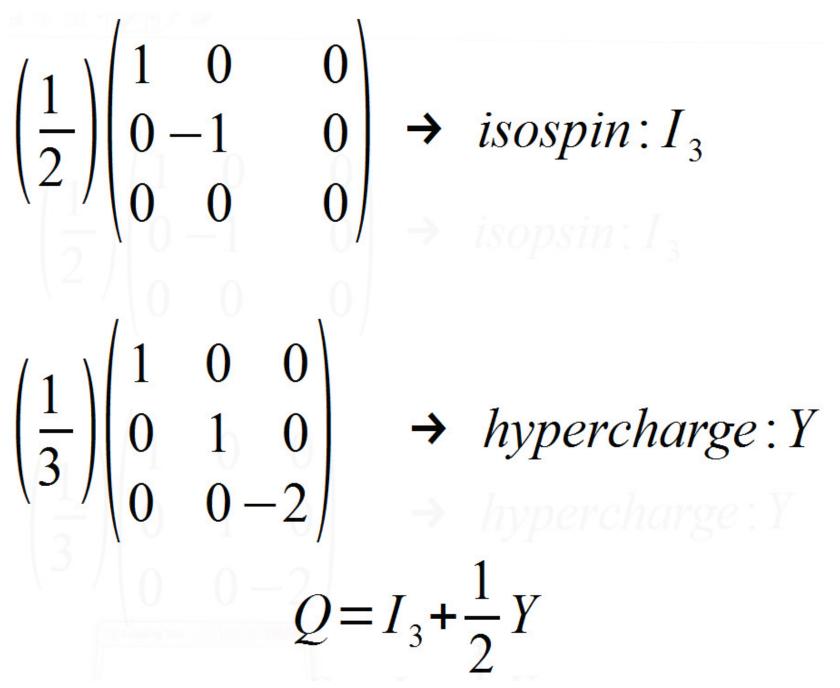
$$S_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} , \quad S_{2} = \frac{i}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} , \quad S_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

In the quark model, we consider three quarks – up, down, and strange

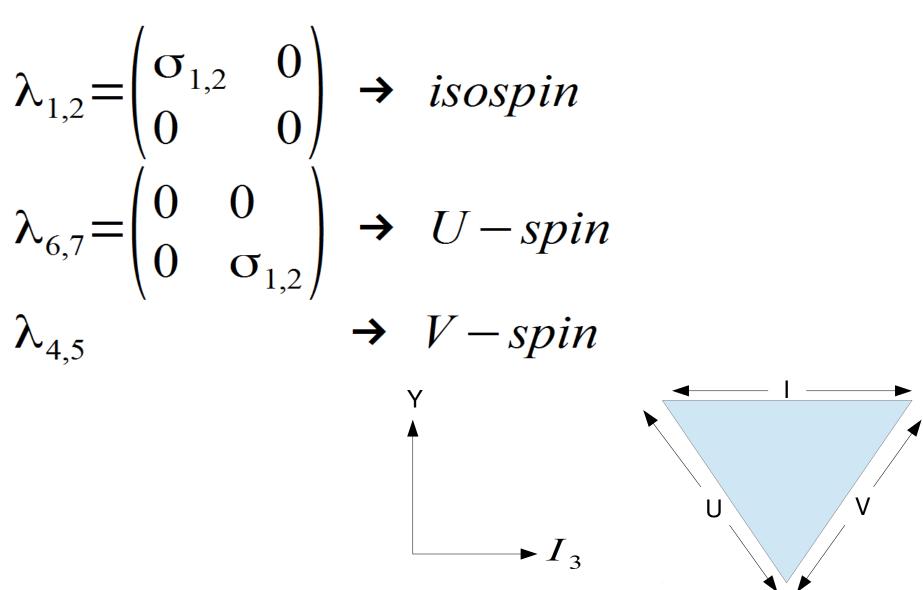
 $m_{u} = 2.3^{+0.7}_{-0.5}$ MeV $m_d = 4.8^{+0.7}_{-0.3}$ MeV $m_{\rm s} = 95 \pm 5$ MeV $m_c = 1.275 \pm 0.025$ GeV $m_b = 4.68 \pm 0.03$ GeV $m_t = 173.5 \pm 0.6 \pm 0.8$ GeV

There are 8 matrices in the defining
representation of SU(3)
$$\phi = \begin{pmatrix} u \\ d \\ s \end{pmatrix}, \quad \phi' = U \phi, \quad U = \exp\left(\frac{1}{2}i \theta \hat{\boldsymbol{n}} \cdot \boldsymbol{\lambda}\right)$$
$$\lambda_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda_{2} = \begin{pmatrix} 0 - i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 - 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda_{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
$$\lambda_{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \quad \lambda_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \lambda_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad \lambda_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

Two of these matrices are diagonal

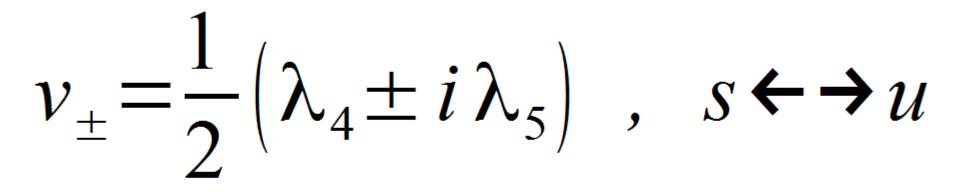


SU(3) contains pieces of SU(2)



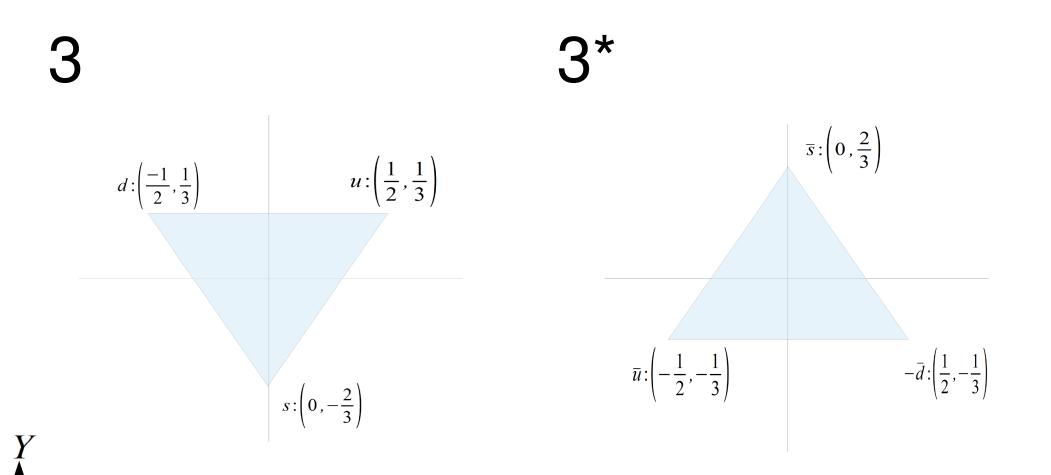
We can form raising and lowering operators within each subgroup

 $I_{\pm} = \frac{1}{2} \left(\lambda_1 \pm i \, \lambda_2 \right) \quad , \quad u \leftrightarrow \to d$

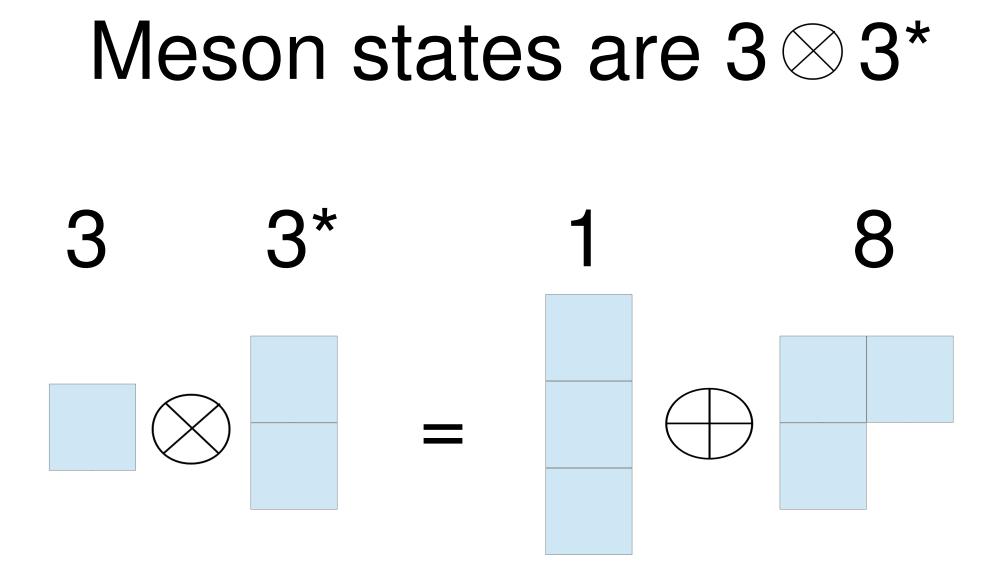


 $u_{\pm} = \frac{1}{2} \left(\lambda_6 \pm i \lambda_7 \right) , \quad s \leftarrow \rightarrow d$

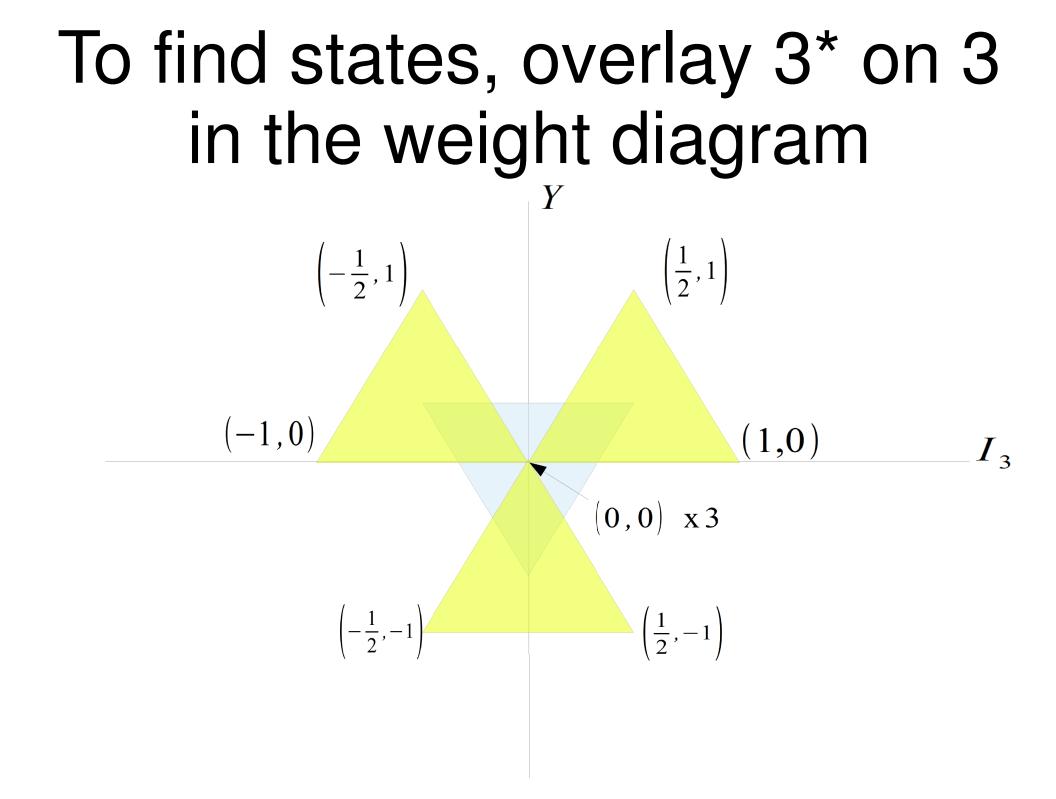
Using the eigenvalues of I_3 and Y, we can draw weight diagrams

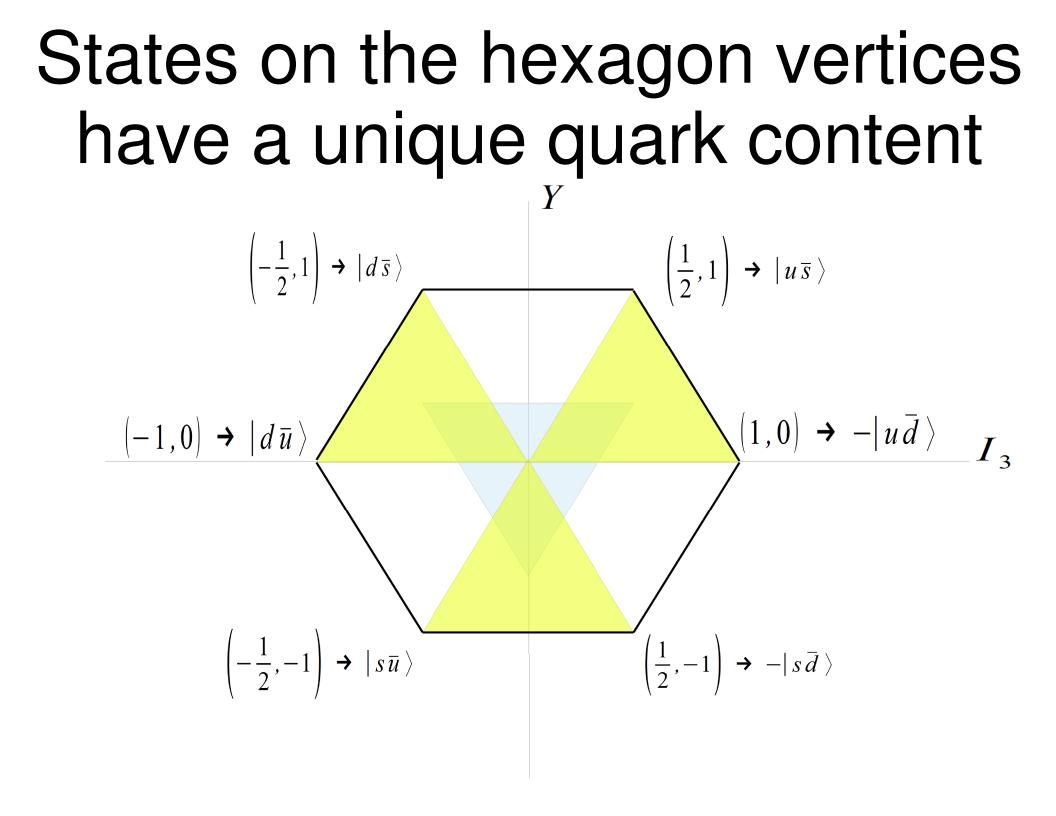


▶]



\rightarrow We expect 9 states!

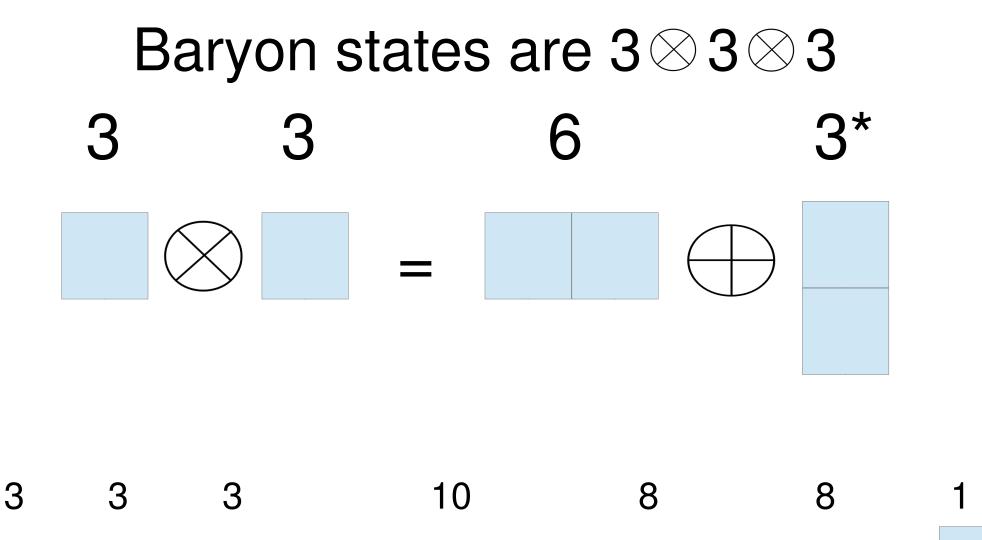


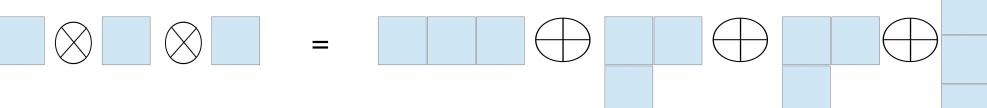


One (0,0) state is found using raising/lowering operators $\frac{1}{\sqrt{2}}I_{-}(-|u\bar{d}\rangle) = \frac{1}{\sqrt{2}}(|u\bar{u}\rangle - |d\bar{d}\rangle)$

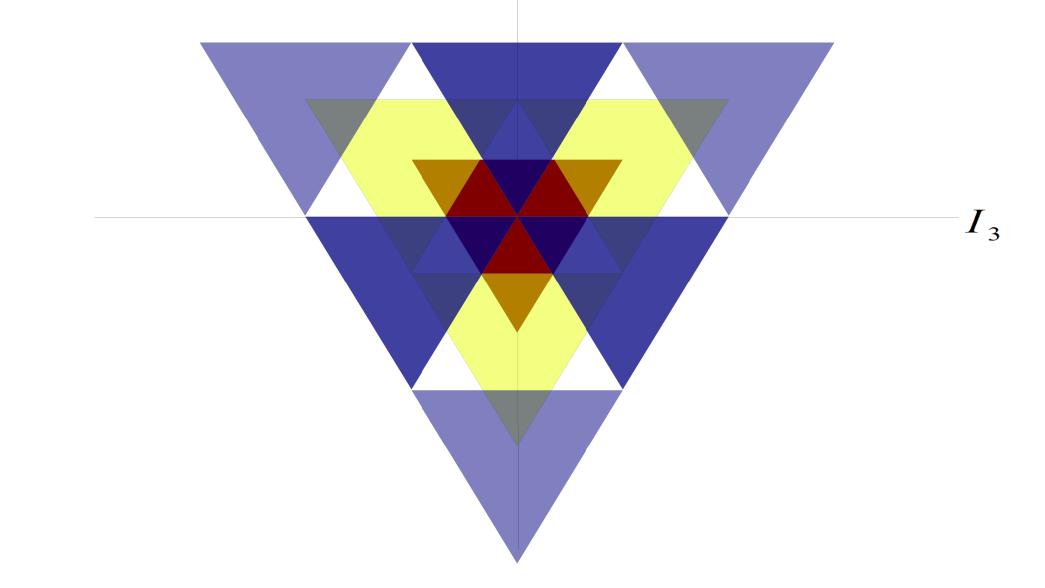
Other (0,0) states are orthogonal $C_1(|u\overline{u}\rangle + |d\overline{d}\rangle + C_2|s\overline{s}\rangle)$

 $C_{3}(|u\overline{u}\rangle + |d\overline{d}\rangle + C_{4}|s\overline{s}\rangle)$





In this case, the overlaid weight diagram is more difficult



Using our knowledge of SU(3), we construct each N-let

Let
$$S_{jk} = \frac{1}{\sqrt{2}} (q_j q_k + q_k q_j)$$
, $A_{jk} = \frac{1}{\sqrt{2}} (q_j q_k - q_k q_j)$
Decouplet: $T_{ijk} = \frac{1}{\sqrt{3}} (S_{ij} q_k + S_{jk} q_i + S_{ki} q_j)$
Octet: $B_j^i = \frac{1}{2} \left[\epsilon^{ilm} A_{lm} q_j - \frac{\sqrt{2}}{3} \delta_j^i \epsilon^{klm} A_{lm} q_k \right]$
Octet': $B_j^{\prime i} = \frac{1}{\sqrt{3}} \epsilon^{ikl} S_{jl} q_k$
Singlet: $\frac{1}{2\sqrt{3}} \epsilon^{klm} A_{lm} q_k$

In practice, it is helpful to consider other physical properties

- Combining three spin-1/2 particles can only result in spin-3/2 or spin-1/2
- Particles of half integer spin must have completely anti-symmetric wave functions
- The color state is anti-symmetric
 → The combination of flavor and spin must be symmetric

References

- An Introduction to Quarks and Partons by F. E. Close
- A Modern Introduction to Particle Physics by Fayyazuddin and Riazuddin
- Particle Physics: A Comprehensive Introduction by Abraham Seiden
- Class Notes, Physics 221A, Bruce Schumm
- Class Notes, Physics 251, Howie Haber