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Point Groups

* Subgroups of O(3)
* 32 Crystallographic Point Groups
X E, i, Cn, On, Oy, O, Sr

* relevant point groups will be
referred to as group P
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D3 symmetries C3 symmetries

reflection axes no reflection axes




Cube and Octahedron are dual

Symmetries under Oy




Space Groups

* Subgroups of E(3)
* Point Group + Translation

X {R|OHE|tla={R|tla=Ra+t
* 230 Space Groups

* 73 symmorphic space groups

* relevant space groups will be referred
to as group S




Bravais
Lattices

* 14 Lattice Types

¥ Defines
translations of
space group

')K t:n1a1+n2a2+n3a3

Bravais
lattice

Parameters

Simple (P)

Volume
centered (I)

Base
centered ()

Face
centered (F)

Triclinic

ay # a; ¥ az

/
y2 F a3 7é 3y

Monoclinic

ay # az # as
a3 = a3y = YW°

2 # 90°

Orthorhombic

Tetragonal

ay # az # ay

W10
a2 = 23 = az = N

Trigonal

ad; = a9 = ajz
12 = (3 = (31 < |20°

Cubic

a, =4z =4as
(+]
12 = a3 = az = N

Hexagonal

ay = ay # as
12 = 1200

a3 = aay = N°




Point Group is Cs

Left: Space Group is P3

Right: Space Group is P31

Molecule is Chiral




Wallpaper Groups

* Wallpaper Groups
* Frieze Groups

* Spherical and
Hyperbolic
Symmetry Groups




he 17 Wallpaper Groups

axis of reflection

axis of glide-reflection

outhne of lattice unit

outline of “centered cell™
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Reciprocal Lattice

* b1 = (a2 x az)(@r - [a2 x as])”

* cyclically permute indices
* Fourier Transformed spatial functions
* Momentum Space

* k vector




X-Ray Dittraction

* Bragg’s Law/Bragg Scattering
* nA = 2dsin(B)

* X-ray diffraction patterns

* Fourier Transform




Bragg Scattering

* X-ray plane waves with propagation vector k
* electron number density n(r)
* n(r+t) = n(r)

* translation in reciprocal lattice space: g




= Y g NgeXxplig - r]
=Yg Ng explig - (r + t)]

=Yg Ng explig - r] explig - t] = n(r)

=2 g Ng explig - rl explig - t] = 2 gngexplig - r]
explig - tj=1=>¢g - t=2mnn
and finally

=Y egNgexplig - rl =n(r + t)
forall te S




scattering amplitude of incident plane waves, F(Ak) is given by

= In(r) riexplir - (k- k’)]dr
and Ak = k’ - k

where Kk’ is the direction of propagation of the scattered wave and
the integral is taken over all lattice sites

and noting that n(r) = Y g ngexplig - r],

= Yelngexplir - (g - Ak)1dr

which allows us to conclude that the scattering amplitude is at a
maximum when g = Ak and using the definition of Ak...

kK=k+g




then the elastic scattering of the x-rays implies

k +g)?2=K? =k

completing the square yields the two bragg conditions:
o2 +2(k-g =0
2k - g =3

after noting that if g is a reciprocal lattice basis vector, so is -g

k - g = |k||g|cos(®
R=0-n/2=>k - g=|k||g|sin(B), now...
21k|sin(0) = |g|
2|t[sin(B) = |g]||t]| / |K|

after noting |t| = d and |k| = 2a/A then |g]||t| / |k| = nA so finally
2dsin(0) = nA
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X-ray diffraction
pattern for NaCl

Structure of NaCl




Electron Wavelunctions

* Bloch’s Theorem
* Probability Density
* Energy invariance

% Degeneracy of electron energy levels




Bloch’s T heorem

s € S, then
s(explik - r]) = explisk - r]
and sf(r) = f(s”'r) implies
s(explik - r]) = explik - s7'r]

now considering the crystal system described by the space group
S, then the potential has periodicity defined by t such that
V(r) =V(r + t)

Bloch’s Theorem States:
Yi(r) = uk(rexplik - r]
where uk(r) = uk(r + t)




Consider the electrons in the crystal defined by S
FM=FEY
[H - E]uk(r)explik - r] =
[H - E]Juk(r) =0

uk(r) is then a solution of Schrodinger’s equation for the crystal

Probability density
Wi(r + 1)|? = |uk(r + t)|?explitk - r) - itk - r)] = |uk(r + t)|?
Wi(r + t)| = |uk(r + t)| = |uk(r)| = |Yk(r)]

Energy
Yi(r + t) = explik - t + ik - rluk(r + t) = explik - t]¥i(r)
HWk(r + 1)) = H(explik - t])¥i(r) = E(explik - t])¥i(r)
E(k) = E(explik - t]) = E(explik + @) - t]) = E(k + @)




Degeneracy
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Character Table of the

Character Tab

e of the

Reducible Representations, Dy,
Irreducible Representations Do =T corresponding to the spherical

: M
D1 = r4 harmonics, Y|

D2:F3+F5
D3:F2+I'4+F5
D4:F1+F3+F4+F5




Neumann’s Principle

% Any physical property of a crystal possesses the
symmetry of its point group, P

% ’Tensors representing a property are invariant under P

% Susceptibility; Stress, Polarizability, Inertial, etc...




Polarizability ‘lensor

P==Con=1{E Gy 1, Oh}
Tij = Tj;

C, operation implies
T =0
T it

This leaves the polarizability
tensor with at most four
components




Magnetic Point Groups

* Magnetic Crystals display different symmetries

* M is the antisymmetry operator (“black and white”,
“time-reversal”, “current-reversal”)

XP=Nu(P-N)

* N is an invariant subgroup of P

¥ P =NuMEP-N)

* P’ is the Magnetic Point Group (“black and white
point group”)

* There are 58 Magnetic Point Groups
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