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Point Groups

Subgroups of O(3)

32 Crystallographic Point Groups

E, i, Cn, σh, σv, σd, Sn

relevant point groups will be 
referred to as group P





D3 symmetries

reflection axes

C3 symmetries

no reflection axes



Cube and Octahedron are dual

Symmetries under Oh



Space Groups
Subgroups of E(3)

Point Group + Translation

{ R | 0 }{ E | t }a = { R | t }a = Ra + t

230 Space Groups

73 symmorphic space groups

relevant space groups will be referred 
to as group S



Bravais 
Lattices

14 Lattice Types

Defines 
translations of 
space group

t=n1a1+n2a2+n3a3



Point Group is C3

Left: Space Group is P32

Right: Space Group is P31

Molecule is Chiral



Wallpaper Groups

Wallpaper Groups

Frieze Groups

Spherical and 
Hyperbolic 
Symmetry Groups



The 17 Wallpaper Groups



p1

p2



p4g

p6m



Reciprocal Lattice

b1 = (a2 × a3)(a1 ⋅ [a2 × a3])-1

cyclically permute indices

Fourier Transformed spatial functions

Momentum Space

k vector



X-Ray Diffraction

Bragg’s Law/Bragg Scattering

nλ = 2dsin(θ)

X-ray diffraction patterns

Fourier Transform



Bragg Scattering

X-ray plane waves with propagation vector k

electron number density n(r)

n(r + t) = n(r)

translation in reciprocal lattice space: g



n(r) = ∑g ng exp[ig ⋅ r]

n(r + t) = ∑g ng exp[ig ⋅ (r + t)]

n(r + t) = ∑g ng exp[ig ⋅ r] exp[ig ⋅ t] = n(r)

n(r) = ∑g ng exp[ig ⋅ r] exp[ig ⋅ t] = ∑g ng exp[ig ⋅ r]
exp[ig ⋅ t] = 1 => g ⋅ t = 2πn

and finally

n(r) = ∑g ng exp[ig ⋅ r] = n(r + t)
for all t ∈ S



scattering amplitude of incident plane waves, F(∆k) is given by

F(∆k) = ∫n(r)exp[ir ⋅ (k - k’)]dr 
and ∆k ≡ k’ - k

where k’ is the direction of propagation of the scattered wave and 
the integral is taken over all lattice sites
and noting that n(r) = ∑g ng exp[ig ⋅ r],

F(∆k) = ∑g∫ngexp[ir ⋅ (g - ∆k)]dr

which allows us to conclude that the scattering amplitude is at a 
maximum when g = ∆k and using the definition of ∆k…

k’ = k + g



then the elastic scattering of the x-rays implies
(k + g)2 = k’2 = k2

completing the square yields the two bragg conditions:
g2 + 2(k ⋅ g) = 0

2(k ⋅ g) = g2

after noting that if g is a reciprocal lattice basis vector, so is -g

k ⋅ g = |k||g|cos(ß)
ß = θ - π/2 => k ⋅ g = |k||g|sin(θ), now…

2|k|sin(θ) = |g|
2|t|sin(θ) = |g||t| / |k|

after noting |t| = d and |k| = 2π/λ then |g||t| / |k| = nλ so finally
2dsin(θ) = nλ



X-ray diffraction 
pattern for NaCl Structure of NaCl



Electron Wavefunctions

Bloch’s Theorem

Probability Density

Energy invariance

Degeneracy of electron energy levels



Bloch’s Theorem
s ∈ S, then

s(exp[ik ⋅ r]) ≡ exp[isk ⋅ r]
and sf(r) = f(s-1r) implies

s(exp[ik ⋅ r]) = exp[ik ⋅ s-1r]

now considering the crystal system described by the space group 
S, then the potential has periodicity defined by t such that

V(r) = V(r + t)

Bloch’s Theorem States:
Ψk(r) = uk(r)exp[ik ⋅ r]
where uk(r) = uk(r + t)



Consider the electrons in the crystal defined by S
HΨ = EΨ

[H - E]uk(r)exp[ik ⋅ r] = 0
[H - E]uk(r) = 0

uk(r) is then a solution of Schrodinger’s equation for the crystal 

Probability density
|Ψk(r + t)|2 = |uk(r + t)|2exp[i(k ⋅ r) - i(k ⋅ r)] = |uk(r + t)|2

|Ψk(r + t)| = |uk(r + t)| = |uk(r)| = |Ψk(r)|

Energy
Ψk(r + t) = exp[ik ⋅ t + ik ⋅ r]uk(r + t) = exp[ik ⋅ t]Ψk(r)
H(Ψk(r + t)) = H(exp[ik ⋅ t])Ψk(r) = E(exp[ik ⋅ t])Ψk(r)
E(k) = E(exp[ik ⋅ t]) = E(exp[i(k + g) ⋅ t]) = E(k + g)



Degeneracy
O E 8C3 3C2 6C2 6C4

Γ1 1 1 1 1 1

Γ2 1 1 1 -1 -1

Γ3 2 -1 2 0 0

Γ4 3 0 -1 -1 1

Γ5 3 0 -1 1 -1

O E 8C3 3C2 6C2 6C4

D0 1 1 1 1 1
D1 3 0 -1 -1 1
D2 5 -1 1 1 -1
D3 7 1 -1 -1 -1
D4 9 0 1 1 1

Character Table of the
Irreducible Representations

Character Table of the
Reducible Representations, DL, 
corresponding to the spherical 

harmonics, YL
M

D0 = Γ1

D1 = Γ4

D2 = Γ3 + Γ5

D3 = Γ2 + Γ4 + Γ5

D4 = Γ1 + Γ3 + Γ4 + Γ5



Neumann’s Principle

Any physical property of a crystal possesses the 
symmetry of its point group, P

Tensors representing a property are invariant under P

Susceptibility, Stress, Polarizability, Inertial, etc...



Polarizability Tensor
P = C2h = {E, C2, i, σh}

Tij = Tji

E C2 i σh

x2 x2 x2 x2 x2

y2 y2 y2 y2 y2

z2 z2 z2 z2 z2

xy xy xy xy xy

xz xz -xz xz xz

yz yz -yz yz yz

C2 operation implies
 Txy = -Txy = 0
Tyz = -Tyz = 0

This leaves the polarizability 
tensor with at most four 

components



Magnetic Point Groups
Magnetic Crystals display different symmetries

M is the antisymmetry operator (“black and white”, 
“time-reversal”, “current-reversal”)

P = N ∪ (P - N)

N is an invariant subgroup of P

P’ = N ∪ M(P - N)

P’ is the Magnetic Point Group (“black and white 
point group”)

There are 58 Magnetic Point Groups
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