CRYSTALLOGRAPHIC POINT AND SPACE GROUPS Andy Elvin June 10, 2013

Contents

- * Point and Space Groups
- * Wallpaper Groups
- * X-Ray Diffraction
- * Electron Wavefunction
- * Neumann's Principle
- * Magnetic Point Groups

Point Groups

* Subgroups of O(3)
* 32 Crystallographic Point Groups
* E, i, C_n, σ_h, σ_v, σ_d, S_n
* relevant point groups will be referred to as group P

System	Class Inter- Schön- national fließ		Symmetry elements		
triclinic	1 ī	$C_1 \\ C_i$	$E \\ E i$		
monoclinic	$egin{array}{c} m \\ 2 \\ 2/m \end{array}$	C_s C_2 C_{2h}	$E \sigma_h \\ E C_2 \\ E C_2 i \sigma_h$		
orthorhombic	2mm 222 mmm	C_{2v} D_2 D_{2h}	$E C_{2} \sigma'_{v} \sigma''_{v} E C_{2} C'_{2} C''_{2} E C_{2} C'_{2} C''_{2} i \sigma_{h} \sigma'_{v} \sigma''_{v}$		
tetragonal	$\begin{array}{c} 4 \\ \bar{4} \\ 4/m \\ 4mm \\ \bar{4}2m \\ 422 \\ 4/mmm \end{array}$	C_4 S_4 C_{4h} C_{4v} D_{2d} D_4 D_{4h}	$E 2C_4 C_2 E 2S_4 C_2 E 2C_4 C_2 i 2S_4 \sigma_h E 2C_4 C_2 2\sigma'_v 2\sigma_d E C_2 C'_2 C''_2 2\sigma_d 2S_4 E 2C_4 C_2 2C'_2 2C''_2 E 2C_4 C_2 2C'_2 2C''_2 i 2S_4 \sigma_h 2\sigma'_v 2\sigma_h$		
trigonal (rhombohedral)	$ \begin{array}{c} 3 \\ \overline{3} \\ 3m \\ 32 \\ \overline{3}m \end{array} $	C_3 S_6 C_{3v} D_3 D_{3d}	$E 2C_{3} E 2C_{3} i 2S_{6} E 2C_{3} 3\sigma_{v} E 2C_{3} 3C_{2} E 2C_{3} 3C_{2} i 2S_{6} 3\sigma_{d}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$C_{3h} \\ C_6 \\ C_{6h} \\ D_{3h} \\ C_{6v} \\ D_6 \\ D_{6h}$	$E 2C_3 \sigma_h 2S_3 E 2C_6 2C_3 C_2 E 2C_6 2C_3 C_2 i 2S_3 2S_6 \sigma_h E 2C_3 3C_2 \sigma_h 2S_3 3\sigma_v E 2C_6 2C_3 C_2 3\sigma_v 3\sigma_d E 2C_6 2C_3 C_2 3C_2' 3C_2'' E 2C_6 2C_3 C_2 3C_2' 3C_2'' E 2C_6 2C_3 C_2 3C_2' 3C_2'' i 2S_3 2S_6 \sigma_h 3\sigma_d 3\sigma_v$		
cubic	$23 \\ m3 \\ \bar{4}3m \\ 432 \\ m3m$	$T \\ T_h \\ T_d \\ O \\ O_h$	$\begin{array}{c} E \ 4C_3 \ 4C_3^2 \ 3C_2 \\ E \ 4C_3 \ 4C_3^2 \ 3C_2 \ i \ 8S_6 \ 3\sigma_h \\ E \ 8C_3 \ 3C_2 \ 6\sigma_d \ 6S_4 \\ E \ 8C_3 \ 3C_2 \ 6C_2' \ 6C_4 \\ E \ 8C_3 \ 3C_2 \ 6C_2 \ 6C_4 \ i \ 8S_6 \ 3\sigma_h \ 6\sigma_d \ 6S_4 \end{array}$		

D₃ symmetries

reflection axes

C₃ symmetries

no reflection axes

Cube and Octahedron are dual

Symmetries under Oh

Space Groups

***** Subgroups of E(3) ***** Point Group + Translation { **R** | **0** }{ **E** | **t** }**a** = { **R** | **t** }**a** = **Ra** + **t** } * 230 Space Groups * 73 symmorphic space groups * relevant space groups will be referred to as group S

the second s		
Bravais	Bravais lattice	Parameters
Lattices	Triclinic	$a_1 \neq a_2 \neq a_3$ $\alpha_{12} \neq \alpha_{23} \neq \alpha_{31}$
	Monoclinic	$a_1 \neq a_2 \neq a_3$ $\alpha_{23} = \alpha_{31} = 90^\circ$ $\alpha_{12} \neq 90^\circ$
* 14 Lattice Types	Orthorhombic	$a_1 \neq a_2 \neq a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 9$
* Defines		$a_1=a_2\neq a_3$
space group	Tetragonal	$\alpha_{12} = \alpha_{23} = \alpha_{31} = 9$
$* t = n_1 a_1 + n_2 a_2 + n_3 a_3$	Trigonal	$a_1 = a_2 = a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} < 12$
	Cubic	$a_1 = a_2 = a_3 \alpha_{12} = \alpha_{23} = \alpha_{31} = 9$

Bravais	Parameters	Simple (P)	Volume	Base	Face
lattice			centered (I)	centered (C)	centered (F)
Triclinic	$a_1 \neq a_2 \neq a_3$ $\alpha_{12} \neq \alpha_{23} \neq \alpha_{31}$				
Monoclinic	$a_1 \neq a_2 \neq a_3$ $\alpha_{23} = \alpha_{31} = 90^{\circ}$ $\alpha_{12} \neq 90^{\circ}$		J.		
Orthorhombic	$a_1 \neq a_2 \neq a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^\circ$				V
Tetragonal	$a_1 = a_2 \neq a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^{\circ}$				
Trigonal	$a_1 = a_2 = a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} < 120^{\circ}$				
Cubic	$a_1 = a_2 = a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^{\circ}$				
Hexagonal	$a_1 = a_2 \neq a_3$ $\alpha_{12} = 120^\circ$ $\alpha_{23} = \alpha_{31} = 90^\circ$				

Point Group is C₃

Left: Space Group is P3₂ Right: Space Group is P3₁

Molecule is Chiral

Wallpaper Groups

- * Wallpaper Groups* Frieze Groups
- * Spherical and Hyperbolic Symmetry Groups

The 17 Wallpaper Groups

• • D D • D D 0 1 p2

Reciprocal Lattice

***** $\mathbf{b}_1 = (\mathbf{a}_2 \times \mathbf{a}_3)(\mathbf{a}_1 \cdot [\mathbf{a}_2 \times \mathbf{a}_3])^{-1}$

- * cyclically permute indices
- * Fourier Transformed spatial functions
- * Momentum Space
- ***** k vector

X-Ray Diffraction

* Bragg's Law/Bragg Scattering
* nλ = 2dsin(θ)
* X-ray diffraction patterns
* Fourier Transform

Bragg Scattering

X-ray plane waves with propagation vector k
electron number density n(r)
n(r + t) = n(r)

* translation in reciprocal lattice space: g

 $n(\mathbf{r} + \mathbf{t}) = \sum_{g} n_{g} \exp[i\mathbf{g} \cdot \mathbf{r}] \exp[i\mathbf{g} \cdot \mathbf{t}] = n(\mathbf{r})$ $n(\mathbf{r}) = \sum_{g} n_{g} \exp[i\mathbf{g} \cdot \mathbf{r}] \exp[i\mathbf{g} \cdot \mathbf{t}] = \sum_{g} n_{g} \exp[i\mathbf{g} \cdot \mathbf{r}]$ $\exp[i\mathbf{g} \cdot \mathbf{t}] = 1 \Rightarrow \mathbf{g} \cdot \mathbf{t} = 2\pi n$ and finally

$$n(\mathbf{r}) = \sum_{\mathbf{g}} n_{\mathbf{g}} \exp[i\mathbf{g} \cdot \mathbf{r}] = n(\mathbf{r} + \mathbf{t})$$

for all $\mathbf{t} \in \mathbf{S}$

 $\mathbf{n}(\mathbf{r}) = \sum_{\mathbf{g}} n_{\mathbf{g}} \exp[\mathbf{i}\mathbf{g} \cdot \mathbf{r}]$

 $n(\mathbf{r} + \mathbf{t}) = \sum_{\mathbf{g}} n_{\mathbf{g}} \exp[i\mathbf{g} \cdot (\mathbf{r} + \mathbf{t})]$

scattering amplitude of incident plane waves, $F(\Delta \mathbf{k})$ is given by

$$F(\Delta \mathbf{k}) = \int n(\mathbf{r}) \exp[i\mathbf{r} \cdot (\mathbf{k} - \mathbf{k'})] d\mathbf{r}$$

and $\Delta \mathbf{k} = \mathbf{k'} - \mathbf{k}$

where **k'** is the direction of propagation of the scattered wave and the integral is taken over all lattice sites and noting that $n(\mathbf{r}) = \sum_{\mathbf{g}} n_{\mathbf{g}} \exp[i\mathbf{g} \cdot \mathbf{r}]$,

$$F(\Delta \mathbf{k}) = \sum_{\mathbf{g}} \int n_{\mathbf{g}} \exp[i\mathbf{r} \cdot (\mathbf{g} - \Delta \mathbf{k})] d\mathbf{r}$$

which allows us to conclude that the scattering amplitude is at a maximum when $\mathbf{g} = \Delta \mathbf{k}$ and using the definition of $\Delta \mathbf{k}$...

$$\mathbf{k'} = \mathbf{k} + \mathbf{g}$$

then the elastic scattering of the x-rays implies $(\mathbf{k} + \mathbf{g})^2 = \mathbf{k'}^2 = \mathbf{k}^2$

completing the square yields the two bragg conditions: $g^2 + 2(\mathbf{k} \cdot \mathbf{g}) = 0$ $2(\mathbf{k} \cdot \mathbf{g}) = g^2$

after noting that if g is a reciprocal lattice basis vector, so is -g

$$\mathbf{k} \cdot \mathbf{g} = |\mathbf{k}||\mathbf{g}|\cos(\mathbf{\beta})$$

$$\mathbf{\beta} = \mathbf{\theta} - \pi/2 \implies \mathbf{k} \cdot \mathbf{g} = |\mathbf{k}||\mathbf{g}|\sin(\mathbf{\theta}), \text{ now...}$$

$$2|\mathbf{k}|\sin(\mathbf{\theta}) = |\mathbf{g}|$$

$$2|\mathbf{t}|\sin(\mathbf{\theta}) = |\mathbf{g}||\mathbf{t}| / |\mathbf{k}|$$

after noting |t| = d and $|k| = 2\pi/\lambda$ then $|g||t| / |k| = n\lambda$ so finally $2dsin(\theta) = n\lambda$

X-ray diffraction pattern for NaCl

Structure of NaCl

Electron Wavefunctions

* Bloch's Theorem

- * Probability Density
- * Energy invariance
- * Degeneracy of electron energy levels

Bloch's Theorem

 $s \in S$, then $s(\exp[i\mathbf{k} \cdot \mathbf{r}]) \equiv \exp[is\mathbf{k} \cdot \mathbf{r}]$ and $sf(\mathbf{r}) = f(s^{-1}\mathbf{r})$ implies $s(\exp[i\mathbf{k} \cdot \mathbf{r}]) = \exp[i\mathbf{k} \cdot s^{-1}\mathbf{r}]$

now considering the crystal system described by the space group **S**, then the potential has periodicity defined by **t** such that $V(\mathbf{r}) = V(\mathbf{r} + \mathbf{t})$

Bloch's Theorem States: $\Psi_{\mathbf{k}}(\mathbf{r}) = u_{\mathbf{k}}(\mathbf{r}) \exp[i\mathbf{k} \cdot \mathbf{r}]$ where $u_{\mathbf{k}}(\mathbf{r}) = u_{\mathbf{k}}(\mathbf{r} + \mathbf{t})$

Consider the electrons in the crystal defined by **S**

$$H\Psi = E\Psi$$

 $[H - E]u_k(\mathbf{r})exp[i\mathbf{k} \cdot \mathbf{r}] = 0$
 $[H - E]u_k(\mathbf{r}) = 0$

 $u_k(\mathbf{r})$ is then a solution of Schrodinger's equation for the crystal

$$\begin{split} & \text{Probability density} \\ |\Psi_{\mathbf{k}}(\mathbf{r} + \mathbf{t})|^2 = |u_{\mathbf{k}}(\mathbf{r} + \mathbf{t})|^2 \text{exp}[i(\mathbf{k} \cdot \mathbf{r}) - i(\mathbf{k} \cdot \mathbf{r})] = |u_{\mathbf{k}}(\mathbf{r} + \mathbf{t})|^2 \\ & |\Psi_{\mathbf{k}}(\mathbf{r} + \mathbf{t})| = |u_{\mathbf{k}}(\mathbf{r} + \mathbf{t})| = |u_{\mathbf{k}}(\mathbf{r})| = |\Psi_{\mathbf{k}}(\mathbf{r})| \end{split}$$

Energy

$$\begin{split} \Psi_{\mathbf{k}}(\mathbf{r} + \mathbf{t}) &= \exp[i\mathbf{k} \cdot \mathbf{t} + i\mathbf{k} \cdot \mathbf{r}]u_{\mathbf{k}}(\mathbf{r} + \mathbf{t}) = \exp[i\mathbf{k} \cdot \mathbf{t}]\Psi_{\mathbf{k}}(\mathbf{r}) \\ & H(\Psi_{\mathbf{k}}(\mathbf{r} + \mathbf{t})) = H(\exp[i\mathbf{k} \cdot \mathbf{t}])\Psi_{\mathbf{k}}(\mathbf{r}) = E(\exp[i\mathbf{k} \cdot \mathbf{t}])\Psi_{\mathbf{k}}(\mathbf{r}) \\ & E(\mathbf{k}) = E(\exp[i\mathbf{k} \cdot \mathbf{t}]) = E(\exp[i(\mathbf{k} + \mathbf{g}) \cdot \mathbf{t}]) = E(\mathbf{k} + \mathbf{g}) \end{split}$$

Degeneracy

0	E	8C ₃	3C ₂	6C ₂	6C ₄
Г ₁	1	1	1	1	1
Г ₂	1	1	1	-1	-1
Г ₃	2	-1	2	0	0
Γ ₄	3	0	-1	-1	1
Г ₅	3	0	-1	1	-1

0	E	8C ₃	3C ₂	6C ₂	6C ₄
D ₀	1	1	1	1	1
D ₁	3	0	-1	-1	1
D ₂	5	-1	1	1	-1
D ₃	7	1	-1	-1	-1
D ₄	9	0	1	1	1

Character Table of the Irreducible Representations Character Table of the $D_0 = \Gamma_1$ Reducible Representations, D_L, corresponding to the spherical harmonics, Y_L^M

 $D_1 = \Gamma_4$ $D_2 = \Gamma_3 + \Gamma_5$ $D_3 = \Gamma_2 + \Gamma_4 + \Gamma_5$ $D_4 = \Gamma_1 + \Gamma_3 + \Gamma_4 + \Gamma_5$

Neumann's Principle

- * Any physical property of a crystal possesses the symmetry of its point group, P
- * Tensors representing a property are invariant under P
 - * Susceptibility, Stress, Polarizability, Inertial, etc...

Polarizability Tensor $P = C_{2h} = \{E, C_2, i, \sigma_h\}$ $T_{ij} = T_{ji}$

	E	C ₂	·	σ_{h}
x ²	x ²	x ²	x ²	x ²
y ²	y ²	y ²	y ²	y ²
Z ²	z ²	z ²	Z ²	Z ²
ху	ху	ху	ху	ху
XZ	XZ	-XZ	XZ	XZ
yz	yz	-yz	уz	уz

C₂ operation implies $T_{xy} = -T_{xy} = 0$ $T_{yz} = -T_{yz} = 0$

This leaves the polarizability tensor with at most four components Magnetic Point Groups
* Magnetic Crystals display different symmetries
* M is the antisymmetry operator ("black and white", "time-reversal", "current-reversal")

 $P = N \cup (P - N)$

***** N is an invariant subgroup of P

 $\mathbf{*P'} = \mathbf{N} \cup M(\mathbf{P} - \mathbf{N})$

* P' is the Magnetic Point Group ("black and white point group")

* There are 58 Magnetic Point Groups

References

- * Michael Tinkham. Group Theory and Quantum Mechanics. Dover Publications, 1992.
- * Richard L. Liboff. *Primer for Point and Space Groups.* Springer, 2004
- * Bradley and Cracknell. *The Mathematical Theory of Symmetry in Solids*. Oxford, 1972.
- * Burns and Glazer. Space Groups for Solid State Scientists. Academic Press, 1990
- * Bhagavantarn and Venkatarayudu. Theory of Groups and its Application to Physical Problems. Academic Press, 1969.