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1. Consider the set R
2 consisting of pairs of real numbers. For (x, y) ∈ R

2, define scalar
multiplication by: c(x, y) = (cx, cy) for any real number c, and define vector addition and
multiplication as follows:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) , (1)

(x1, y1) · (x2, y2) = (x1x2, y1y2) . (2)

(a) Is R2 a group?

It is straightforward to check the group axioms and show that R2 is a group under addition
[as defined in eq. (1)]. R2 is not a group under multiplication. For example, (0, 0) does not
possess a multiplicative inverse.

(b) Is R2 a field?

R
2 is not a field. Recall that all elements of a field, excluding the additive inverse, must

possess a multiplicative inverse. In the case of R2, the additive inverse is (0, 0). However,
for any x 6= 0 and y 6= 0, (x, 0) and (0, y) also do not possess multiplicative inverses.

(c) Is R2 a linear vector space (over R)?

It is straightforward to check the axioms that define a linear vector space and show that
R

2 is a linear vector space over R.

(d) Is R2 a linear algebra (over R)?

It is straightforward to check the axioms that define a linear algebra and show that R2 is
a linear algebra, where the vector multiplication law is given by eq. (2).

2. Consider the following two groups:

T =
{
proper rotations that map a regular tetrahedron into itself

}
,

Td =
{
proper rotations and reflections that map a regular tetrahedron into itself

}
.

Show that the following isomorphisms are valid: T ∼= A4 and Td ∼= S4.

A regular tetrahedron consists of four equilateral triangles with four vertices (labeled
by the integers 1,2,3,4) as shown in Figure 1(a). The symmetry operations, consisting of
proper rotations [shown in Figure 1(b) and (c)] and reflections through planes that pass
through two of the four tetrahedron vertices, have the effect of permuting the four vertices.
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Figure 1: Proper rotations that map a regular tetrahedron into itself.

Consider first the proper rotations. One can rotate by 120◦ in a clockwise or coun-
terclockwise fashion about an axis through vertex 1, denoted by τ1 in Figure 1(b). This
has the effect of permuting the vertices 2,3,4. All in all, one can perform clockwise or
counterclockwise rotations about any one of the four axes [denoted by τi, i = 1, 2, 3, 4 in
Figure 1(b)]. In each case, three of the four vertices are permuted. One can describe each
rotation by an element of the permutation group. Using cycle notation, the eight rotation
operations described above correspond to the three-cycles of the permutation group S4. In
cycle notation, these are:

(123), (132), (124), (142), (134), (143), (234), (243) . (3)

In addition, one can rotate by 180◦ about the axes that are denoted by σi, i = 1, 2, 3 in
Figure 1(c). For example, performing a 180◦ about σ1 interchanges vertices 1 and 2 and like-
wise interchanges vertices 3 and 4. Thus, the three possible rotation operations described
above correspond to permutations that are the product of two disjoint transpositions. In
cycle notation, these are:

(12)(34), (13)(24), (14)(23) (4)

Finally, the identity element corresponds to performing no rotation (or reflection). This
completes the enumeration of all possible proper rotations that map a regular tetrahedron
into itself. We conclude that

T = {e, (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23)} .
(5)

These twelve elements correspond to the even permutations of the four vertices.1 Therefore,
it follows that

T ∼= A4 ,

where A4, the alternating group of four objects, is the subgroup of the permutation group
S4 that consists of the even permutations of four objects.

1Even permutations can be expressed as the product of an even number of transpositions. Moreover,
as shown in class, an n-cycle can be written as the product of n− 1 transpositions. Hence, it follows that
3-cycles must be even permutations. Thus, eq. (5) exhausts all the possible even permutations of four
objects.
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Figure 2: Consider the bisectors of two of the equilateral triangles that are faces of the
tetrahedron. The two bisectors meet at a point. The other ends of the two bisectors are
connected by one of the tetrahedron edges. This defines one of six possible reflection planes
that pass through two of the four vertices of the tetrahedron.

One can also consider six possible reflection planes, one of which is illustrated in Fig-
ure 2. Note that each reflection plane passes through two of the four possible tetrahedron
vertices. There are 4!/(2! 2!) = 6 ways of choosing the two vertices. When a reflection
through one of these planes is carried out, the tetrahedron is mapped into itself. The two
vertices that are located on the reflection plane are unaffected by the reflection, whereas
the other two vertices are interchanged. These correspond to the transpositions of S4,

(12), (13), (14), (23), (24), (34) . (6)

One can also combine any one of these reflections with a proper rotation. It is sufficient
to consider one reflection (e.g., the reflection that interchanges vertices 1 and 2). There are
six new permutations that can be produced:

(1 3 4)(1 2) =

(
1 2 3 4

3 2 4 1

)(
1 2 3 4

2 1 3 4

)

=

(
1 2 3 4

2 3 4 1

)

= (1 2 3 4) ,

(1 4 3)(1 2) =

(
1 2 3 4

4 2 1 3

)(
1 2 3 4

2 1 3 4

)

=

(
1 2 3 4

2 4 1 3

)

= (1 2 4 3) ,

(2 3 4)(1 2) =

(
1 2 3 4

1 3 4 2

)(
1 2 3 4

2 1 3 4

)

=

(
1 2 3 4

3 1 4 2

)

= (1 3 4 2) ,

(2 4 3)(1 2) =

(
1 2 3 4

1 4 3 2

)(
1 2 3 4

2 1 3 4

)

=

(
1 2 3 4

4 1 2 3

)

= (1 4 3 2) ,

(1 3)(2 4)(1 2) =

(
1 2 3 4

3 4 1 2

)(
1 2 3 4

2 1 3 4

)

=

(
1 2 3 4

4 3 1 2

)

= (1 4 2 3) ,

(1 4)(2 3)(1 2) =

(
1 2 3 4

4 3 2 1

)(
1 2 3 4

2 1 3 4

)

=

(
1 2 3 4

3 4 2 1

)

= (1 3 2 4) .
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Combining the reflection that interchanges vertices 1 and 2 with the five remaining rotations
listed in eqs. (3) and (4) yields the five remaining transpositions,

(1 2 3)(1 2) =

(
1 2 3 4

2 3 1 4

)(
1 2 3 4

2 1 3 4

)

=

(
1 2 3 4

3 2 1 4

)

= (1 3) ,

(1 3 2)(1 2) =

(
1 2 3 4

3 1 2 4

)(
1 2 3 4

2 1 3 4

)

=

(
1 2 3 4

1 3 2 4

)

= (2 3) ,

(1 2 4)(1 2) =

(
1 2 3 4

2 4 3 1

)(
1 2 3 4

2 1 3 4

)

=

(
1 2 3 4

4 2 3 1

)

= (1 4) ,

(1 4 2)(1 2) =

(
1 2 3 4

4 1 3 2

)(
1 2 3 4

2 1 3 4

)

=

(
1 2 3 4

1 4 3 2

)

= (2 4) ,

(1 2)(3 4)(1 2) =

(
1 2 3 4

2 1 4 3

)(
1 2 3 4

2 1 3 4

)

=

(
1 2 3 4

1 2 4 3

)

= (3 4) .

Thus, all the odd permutations of the four tetrahedron vertices can be realized by either
a single reflection or a reflection followed by a rotation. One can easily check that two
successive symmetry operations of the tetrahedron are in one-to-one correspondence with
the multiplication table of S4. Thus, we conclude that

Td ∼= S4 .

3. Consider the dihedral group D4.

(a) Write down the group multiplication table.

The elements of D4 are defined by:

D4 = {1, r, r2, r3, d, rd, r2d, r3d} ,

where the elements satisfy the relations,

r4 = d2 = 1 and dr = r3d . (7)

We have used the notation e ≡ 1 to define the identity element of D4. Using eq. (7), the
group multiplication table is immediately obtained:

1 r r2 r3 d rd r2d r3d
1 1 r r2 r3 d rd r2d r3d
r r r2 r3 1 rd r2d r3d d
r2 r2 r3 1 r r2d r3d d rd
r3 r3 1 r r2 r3d d rd r2d
d d r3d r2d rd 1 r3 r2 r
rd rd d r3d r2d r 1 r3 r2

r2d r2d rd d r3d r2 r 1 r3

r3d r3d r2d rd d r3 r2 r 1

4



(b) Enumerate the subgroups, the normal subgroups and the classes.

There are eight proper subgroups of D4:

{1, r2} ∼= {1, d} ∼= {1, rd} ∼= {1, r2d} ∼= {1, r3d} ∼= Z2 ,

{1, r, r2, r3} ∼= Z4 ,

{1, r2, d, r2d} ∼= {1, r2, rd, r3d} ∼= D2 .

Among these subgroups, four are normal subgroups:2

{1, r2} ∼= Z2 , {1, r, r2, r3} ∼= Z4 , and {1, r2, d, r2d} ∼= {1, r2, rd, r3d} ∼= D2 .

Finally, we enumerate the classes:

C1 = {1} , C2 = {r, r3} , C3 = {r2} , C4 = {d, r2d} and C5 = {rd, r3d} . (8)

(c) Identify the factor groups. Is the full group the direct product of some of its sub-
groups?

Using the results of part (b), the possible factor groups are:

D4/Z2
∼= D2 , D4/Z4

∼= Z2 , D4/D2
∼= Z2 . (9)

The last two factor groups are identified uniquely as Z2, since this is the only group of
two elements. The identification of the first factor group is non-trivial, since there are two
possible groups of order four—D2 and Z4. Note that D2 is not a cyclic group, whereas
Z2 is a cyclic group. However, it is clear that D4/Z2 is not a cyclic group. In particular,
writing out the left cosets,

D4/Z2 =

{

{1, r2} , {r, r3} , {d, r2d} , {rd, r3d}

}

,

and identifying {1, r2} as the identity element of D4/Z2, it is straightforward to check that
the squares of all the other elements of D4/Z2 yields the identity element, which is not in
general satisfied by the elements of Z4.

In light of eq. (9), the only possible candidates for writing D4 as a direct product of
its subgroups are Z2 ⊗ D2 or Z2 ⊗ Z4. But the latter two are direct products of abelian
groups, which imply that the corresponding direct product groups are abelian, whereas D4

is a non-abelian group. Hence, D4 is not a direct product of some of its subgroups. On the
other hand, D4 can be expressed as a semi-direct product of its subgroups in two different
ways,

D4
∼= Z4 ⋊ Z2

∼= D2 ⋊ Z2 . (10)

2One can prove that if a finite group G possesses a subgroup H that contains exactly half the number
of elements of G, then H is a normal subgroup of G.
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If we take D2 = {1, r2, rd, r3d}, then we identify Z2 = {1, d} in both semi-direct products
of eq. (10).3 Note that D4 cannot be written as Z2 ⋊D2, since the first group of the semi-
direct product is the normal subgroup. But, with Z2 = {1, r2}, we see that one does not
obtain all elements of D4 in the form of g1g2, with g1 ∈ Z2 = {1, r2} and g2 ∈ D2.

(d) Write out the class multiplication table.

Using eq. (8) and the group multiplication table, one obtains the following class multipli-
cation table:

C1 C2 C3 C4 C5
C1 C1 C2 C3 C4 C5
C2 C2 2C1 + 2C3 C2 2C5 2C4
C3 C3 C2 C1 C4 C5
C4 C4 2C5 C4 2C1 + 2C3 2C2
C5 C5 2C4 C5 2C2 2C1 + 2C3

(e) Determine explicitly the matrices of the regular representation.

We rewrite the group multiplication table so that the group elements are listed in the first
column and the corresponding inverses are listed in the first row.

1 r3 r2 r d rd r2d r3d
1 1 r3 r2 r d rd r2d r3d
r r 1 r3 r2 rd r2d r3d d
r2 r2 r 1 r3 r2d r3d d rd
r3 r3 r2 r 1 r3d d rd r2d
d d rd r2d r3d 1 r3 r2 r
rd rd r2d r3d d r 1 r3 r2

r2d r2d r3d d rd r2 r 1 r3

r3d r3d d rd r2d r3 r2 r 1

The matrix of the regular representation of the element g ∈ D4 is then obtained from this
table by replacing the corresponding every appearance of g with 1, and filling up the rest
of the corresponding matrix with zeros. That is,

1 =















1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1















, r =















0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0















,

3If D2 = {1, r2, d, r2d} then we identify Z2 = {1, rd} in the second semi-direct product in eq. (10).
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r2 =















0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0















, r3 =















0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0















,

d =















0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0















, rd =















0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0















,

r2d =















0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0















, r3d =















0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0















.

(f) Write out an explicit irreducible two-dimensional representation of D4. Check that
the group multiplication table is preserved. Verify that this representation is irreducible.

In class, we wrote out the following two-dimensional representation for Dn,

r =

(
cos(2π/n) − sin(2π/n)
sin(2π/n) cos(2π/n)

)

, d =

(
1 0
0 −1

)

.

For n = 4, this yields:

1 =

(
1 0
0 1

)

, r =

(
0 −1
1 0

)

, r2 =

(
−1 0
0 −1

)

, r3 =

(
0 1

−1 0

)

,

d =

(
1 0
0 −1

)

, rd =

(
0 1
1 0

)

, r2d =

(
−1 0
0 1

)

, r3d =

(
0 −1

−1 0

)

.

One easily checks that the above representation matrices satisfy the group multiplication
table.

To show that this is an irreducible representation, we must prove that there is no basis
in which the above matrices are reduced to block diagonal form. If such a basis existed,
then we could simultaneously diagonalize the matrices that represent r and rd. But these
elements do not commute and thus are not simultaneously diagonalizable.
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As an alternative proof that the above two-dimensional representation, D(g), is irre-
ducible, one can check explicitly that if AD(g) = D(g)A for all g ∈ D4, then A is a multiple
of the identity. For this problem, it is enough to check that for an arbitrary 2×2 matrix A,
if Ar = rA and Ad = dA, with r and d given by the 2 × 2 matrices listed above, then
A = c12×2 for some complex number c. Hence, by Schur’s second lemma, D(g) is an
irreducible representation of D4.

4. The center of a group G, denoted by Z(G), is defined as the set of elements z ∈ G that
commute with all elements of the group. That is,

Z(G) = {z ∈ G | zg = gz , ∀ g ∈ G} .

(a) Show that Z(G) is an abelian subgroup of G.

To prove that Z(G) is a subgroup of G, we must prove that:

(i) z1, z2 ∈ Z(G) =⇒ z1z2 ∈ Z(G),

(ii) e ∈ Z(G), where e is the identity,

(iii) z ∈ Z(G) =⇒ z−1 ∈ Z(G) .

To prove (i), we note that z1, z2 ∈ Z(G) means that

z1g = gz1 , for all g ∈ G, (11)

z2g = gz2 , for all g ∈ G. (12)

Multiply eq. (11) on the right by z2 to obtain

z1gz2 = gz1z2 . (13)

Then, use eq. (12) to write z1gz2 = z1z2g. Then, eq. (13) can be rewritten as

z1z2g = gz1z2 ,

which means that z1z2 commutes with any element g ∈ G. Hence, z1z2 ∈ Z(G).
The proof of (ii) is trivial since e commutes with all elements of G. Finally to prove

(iii) we note that z ∈ Z(G) means that zg = gz for all g ∈ G. Multiplying this equation
on the left by g−1 and on the right by g−1 yields

g−1z = zg−1 , for all g ∈ G . (14)

Taking the inverse of eq. (14) yields

z−1g = gz−1 , for all g ∈ G .

Hence, z−1 ∈ Z(G). Thus, we have succeeded in showing Z(G) is a subgroup of G.
Finally, it should be clear that Z(G) is an abelian subgroup. As previously noted, for

any z1, z2 ∈ Z(G), eq. (11) is satisfied. In particular, choosing g = z2 in eq. (11), it follows
that z1z2 = z2z1. This arguments continues to hold for any choice of z1,z2 ∈ Z(G). Thus,
we conclude that Z(G) is an abelian subgroup of G.
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(b) Show that Z(G) is a normal subgroup of G.

To show that Z(G) is a normal subgroup, one must show that for any z ∈ Z(G) and g ∈ G,
we have gzg−1 ∈ Z(G). By definition, if z ∈ Z(G) then gz = zg for all g ∈ G. Hence, for
any z ∈ Z(G), we have gzg−1 = z for all g ∈ G. Since z ∈ Z(G) by assumption, one can
conclude that gzg−1 ∈ Z(G) for all g ∈ G, as required for a normal subgroup.

(c) Find the center of D4 and construct the group D4/Z(D4). Determine whether the
isomorphism D4

∼= [D4/Z(D4)]⊗ Z(D4) is valid.

The multiplication table for D4 was given in part (a) of problem 2. Inspection of the
multiplication table reveals that:

Z(D4) = {e, r2} ∼= Z2 ,

where the identification of the center follows from the fact that any finite group of two
elements must be isomorphic to Z2.

The left cosets of D4 with respect to the Z2 subgroup are:

Z2 = {e, r2} ,

rZ2 = {r, r3} ,

dZ2 = {d, r2d} ,

rdZ2 = {rd, r3d} ,

which exhausts all the elements of D4. We identify the quotient group

D4/Z2 =

{

{e, r2} , {r, r3} , {d, r2d} , {rd, r3d}

}

.

Using the multiplication table for D4, one can easily construct the multiplication table for
D4/Z2,

{e, r2} {r, r3} {d, r2d} {rd, r3d}
{e, r2} {e, r2} {r, r3} {d, r2d} {rd, r3d}
{r, r3} {r, r3} {e, r2} {rd, r3d} {d, r2d}
{d, r2d} {d, r2d} {rd, r3d} {e, r2} {r, r3}
{rd, r3d} {rd, r3d} {d, r2d} {r, r3} {e, r2}

This is clearly not a cyclic group with one generator. Hence, it is not isomorphic to the
cyclic group Z4, which leave only one remaining possibility, D2. Indeed, one can check that
the multiplication table above is equivalent to that of D2. Hence,

D4/Z2
∼= D2 .

Finally, if the isomorphism D4
∼= [D4/Z(D4)]⊗ Z(D4) were valid, then

D4

?
∼= D2 ⊗ Z2 .

But this identification is incorrect. In particular, D4 is a nonabelian group, whereas both
D2 and Z2 are abelian groups. Thus, it follows that D2 ⊗ Z2 is abelian, which means that
this group cannot be isomorphic to the nonabelian group D4.
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5. An automorphism is defined as an isomorphism of a group G onto itself.

(a) Show that for any g ∈ G, the mapping Tg(x) = gxg−1 is an automorphism (called
an inner automorphism), where x ∈ G.

To show that Tg(x) = gxg−1 is an automorphism, we must show that it is a homomorphism
from the groupG to itself that is one-to-one and onto. To prove that Tg is a homomorphism,
one must verify that

Tg(x)Tg(y) = Tg(xy) , for all x, y ∈ G . (15)

That is, Tg(x) preserves the group multiplication table. The computation is straightforward:

Tg(x)Tg(y) = (gxg−1)(gyg−1) = gxyg−1 = Tg(xy) .

To see that Tg(x) = gxg−1 is one-to-one and onto (i.e. it is an isomorphism), we can
invoke the rearrangement lemma. Multiplication on the left and/or on the right by a fixed
element of G simply reorders the group multiplication table.4 Hence, we conclude that Tg
is an isomorphism from G −→ G. That is, Tg is an automorphism of the group G.

(b) Show that the set of all inner automorphisms of G, denoted by I(G), is a group.

Define I(G) = {Tg | g ∈ G}. Since Tg is an automorphism, we can introduce a group
multiplication law that consists of the composition of two maps. In particular,

Tg1Tg2(x) = Tg1(g2xg
−1
2 ) = g1g2xg

−1
2 g−1

1 = (g1g2)x(g1g2)
−1 = Tg1g2(x) ,

which holds for any x ∈ G. Hence, the composition of two maps is given by:

Tg1Tg2 = Tg1g2 . (16)

It follows that I(G) satisfies the axioms of a group by virtue of the fact that the group
G satisfies the group axioms. In particular, eq. (16) implies that I(G) is closed with
respect to the group multiplication law. Moreover, associativity is guaranteed because
g1(g2g3) = (g1g2)g3 implies that

Tg1(Tg2Tg3) = (Tg1Tg2)Tg3 = Tg1g2g3 .

4One can also prove the one-to-one and onto properties directly. To prove that the homomorphism is
one-to-one, one must show that

Tg(x) = Tg(y) =⇒ x = y .

But, Tg(x) = Tg(y) implies that gxg−1 = gyg−1. Multiplying this equation on the left by g−1 and on the
right by g then yields x = y. To prove that the homomorphism is onto, one must show that for all y ∈ G,
there exists an x ∈ G such that Tg(x) = y. In this case, it is sufficient to choose x = g−1yg. Evaluating
Tg(x) for this choice,

Tg(g
−1yg) = g(g−1yg)g−1 = y ,

as required. Thus, for any choice of y ∈ G, we have explicitly determined the required x, namely x = g−1yg,
such that Tg(x) = y. That is, the homomorphism maps G onto itself.

10



The identity of I(G) is Te (where e is the identity element of the group G) since

TgTe = TeTg = Tge = Teg = Tg .

The inverse of Tg is Tg−1, since

TgTg−1 = Tg−1Tg = Tgg−1 = Tg−1g = Te .

Thus, the group axioms are satisfied, which implies that I(G) is a group.

(c) Show that I(G) ≃ G/Z(G), where Z(G) is the center of G.

The kernel of the map f : G −→ G ′ is defined by

K ≡ ker f = {g ∈ G | f(g) = e′} ,

where G ′ is the image of f and e′ is the identity element of G ′. Introduce the two homo-
morphisms,

φ : G −→ G/K given by φ(g) = gK ,

ψ : G/K −→ G ′ given by ψ(gK) = f(g) .

It follows that ψ ·φ(g) = f(g). It is straightforward to show that ψ is an isomorphism, in
which case we can identify

G ′ ∼= G/K . (17)

This result can be represented diagrammatically by:

G G ′

G/K

f

φ ψ

Consider the homomorphism,

f : G −→ I(G) given by f(g) = Tg .

Note that f is onto, i.e. I(G) is the image of f . The kernel of f is

K = {g ∈ G} | f(g) = Te} ,

where Te is the identity element of I(G), i.e. Te(x) = x. Thus, K consists of all elements of
G satisfying Tg = Te, or equivalently, gxg

−1 = x , which implies that gx = xg for all x ∈ G.
We recognize this as the center of G, denoted by Z(G) in problem 4. Using eq. (17), it
follows that

I(G) ∼= G/Z(G) . (18)

11



(d) Show that the set of all automorphisms of G, denoted by A(G), is a group and that
I(G) is a normal subgroup. (The factor group A(G)/I(G) is called the group of outer
automorphisms of G.)

Let A(G) be the set of all automorphisms of G. To show that this is a group, we must
define the group multiplication law. As in the case of part (b), we define

A1A2(g) = A1(A2(g)) , for A1, A2 ∈ A and g ∈ G .

That is the multiplication law is simply the composition of maps. It is straightforward to
verify that the group axioms are satisfied. Note that since an automorphism is one-to-one
and onto, each element of A(G) possesses a unique inverse. Next, we demonstrate that the
set of inner automorphisms, {Tg | g ∈ G}, forms a normal subgroup of A(G). To do this,
one must show that

ATgA
−1 ∈ I(G) , for all A ∈ A(G) .

Consider,

ATgA
−1(x) = ATg(A

−1(x)) = A(gA−1(x)g−1)

= A(g)A(A−1(x))A(g−1) = A(g)xA−1(g)

= TA(g)(x) , (19)

where we have used the fact that A is a homomorphism, which therefore satisfies

A(g1g2) = A(g1)A(g2) and A(g−1) = A−1(g) , for any g, g1, g2 ∈ G . (20)

It follows that
ATgA

−1 = TA(g) ∈ I(G) .

(e) Illustrate these results for G = S3 and G = Z.

We now illustrates the above results in three specific examples.

(i) G = S3

First we note that the center of S3 contains only the identity. This is easily seen by
examining the group multiplication table of S3 and observing that no element other than
the identity commutes with all the elements of S3. Thus, the center Z(S3) is trivial, and
we conclude that I(S3) ∼= S3.

What are these inner automorphisms? Since the mapping Tg(x) = gxg−1 is an inner
automorphism, we see that x and Tg(x) are related by conjugation and thus are in the same
conjugacy class. In class, I showed that elements of Sn that appear in the same conjugacy
class possess the same cycle structure. Applying this result to S3, it follow that if x is a
transposition, then so is Tg(x). Indeed, if I specify how Tg acts on the transpositions, then
the corresponding inner automorphism is uniquely specified since the product of any pair
of transpositions is given by either (123) or (132). Thus using the group multiplication
table of S3 along with eq. (15), the values of Tg

(
(12)

)
, Tg

(
(13)

)
and Tg

(
(23)

)
determine

12



how Tg acts on (123) and (132).5 Since there are three possible transpositions, this yields
3! = 6 possible inner automorphisms corresponding to the six possible choices for the three
quantities, Tg

(
(12)

)
, Tg

(
(13)

)
and Tg

(
(23)

)
.

Are there any automorphisms of S3 that are not inner automorphisms? Any such
mapping must map one of the transpositions to either (123) of (132).6 But, the square of a
transposition is the identity, whereas the square of (123) is (132) and vice versa. Thus, such
a mapping cannot be an automorphism, as it does not preserve the group multiplication
table. Hence, we conclude that A(S3) = I(S3) ∼= S3, in which case the group of outer
automorphisms is trivial.

(ii) G = Z

First, we note that I(Z) is trivial since Z is abelian. Also, since Z is a cyclic group, the set
of maps f : Z → Z is in one-to-one correspondence with the set of possible values of f(1).
If f is a homomorphism, then it must satisfy f(0) = 0 and

f(k) = f(1 + 1 + . . .+ 1
︸ ︷︷ ︸

k

) = f(1) + f(1) + . . .+ f(1)
︸ ︷︷ ︸

k

= kf(1) , (21)

for any integer k. An automorphism is a homomorphism f : G → G that is one-to-one
and onto. If f(1) 6= 0 then kerf = {0}, since the identity is the only element of G that
is mapped to the identity, in which case it follows that f is a one-to-one map. We now
demonstrate that f is an onto map if and only if f(1) = ±1. First, the homomorphism
corresponding to f(1) = 1 is the identity map which is one-to-one and onto. Next, eq. (21)
implies that the homomorphism corresponding to f(1) = −1 is:

f : Z −→ Z given by f(n) = −n for n ∈ Z ,

which is also one-to-one and onto. For any other integer choice of f(1) = k 6= ±1, the
corresponding map is not onto. In particular, the equation f(n) = 1 has no solution for
n ∈ Z. Thus we conclude that the only possible automorphisms f : Z → Z are the maps
f(n) = ±n for n ∈ Z. Since the set of automorphisms forms a group, as shown in part (d),
it follows that A(Z) is a discrete group of two elements. Only one such group exists, and
we conclude that

A(Z) = Z2 .

Since I(Z) is trivial, it follows that the group of outer automorphisms of the integers is Z2.

5Of course, in light of eq. (15) where x = e, it follows that Tg(e) = e for any automorphism Tg.
6Only the identity e is mapped onto e by an automorphism, for the same reason cited in the previous

footnote.
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6. Consider an arbitrary orthogonal matrix R, which satisfies RRT = 1 (where 1 is the
identity matrix).

(a) Prove that the possible values of detR are ±1.

Using the fact that detRT = detR, it follows that

det(RRT) = (detR)(detRT) = [detR]2 = 1 , (22)

since RRT = 1 implies that det(RRT) = det 1 = 1. Taking the square root of eq. (22)
yields detR = ±1

(b) The group SO(2) consists of all 2 × 2 orthogonal matrices with unit determinant.
Prove that SO(2) is an abelian group.

Suppose that Q ∈ SO(2). If we parameterize

Q =

(
a b
c d

)

,

then we can find relations among the parameters a, b, c and d by imposing the conditions
QTQ = 1 and detQ = 1. That is,

(
a c
b d

)(
a b
c d

)

=

(
a2 + c2 ab+ cd
ab+ cd b2 + d2

)

=

(
1 0
0 1

)

,

and detQ = ad − bc = 1. Hence, the relations among the parameters a, b, c and d are
determined by the following conditions,

a2 + c2 = b2 + d2 = 1 , ab+ cd = 0 , ad− bc = 1 . (23)

We now consider two cases. First if c 6= 0, it follows that d = −ab/c. Inserting this
result back into eq. (23) yields

1 = ad− bc = −
a2b

c
− bc = −

b

c

(
a2 + c2

)
= −

b

c
,

after using eq. (23). That is, c = −b. It immediately follows that d = −ab/c = a, and we
conclude that the most general SO(2) matrix is given by

Q =

(
a b

−b a

)

.

In light of eq. (23), c = −b yields a2 + b2 = 1, which implies that −1 ≤ a, b ≤ 1. Thus, it
is convenient to parameterize a and b by defining a = cos θ and b = sin θ. Hence, the most
general SO(2) matrix is given by

Q =

(
cos θ sin θ

− sin θ cos θ

)

, (24)

where 0 ≤ θ < 2π.

14



Next, we examine the case of c = 0. In this case, eq. (23) yields a2 = 1, ab = 0, and
ad = 1. It follows that b = 0 and a = d = ±1. Hence the form for Q in this case (where
a = d = ±1 and b = c = 0) is consistent with eq. (24).

It is now a simple matter to check that any two elements of SO(2) of the form given in
eq. (24) commute. In particular,

(
cos θ1 sin θ1

− sin θ1 cos θ1

)(
cos θ2 sin θ2

− sin θ2 cos θ2

)

=

(
cos θ1 cos θ2 − sin θ1 sin θ2 sin θ1 cos θ2 + cos θ1 sin θ2

− sin θ1 cos θ2 − cos θ1 sin θ2 cos θ1 cos θ2 − sin θ1 sin θ2

)

=

(
cos(θ1 + θ2) sin(θ1 + θ2

− sin(θ1 + θ2) cos(θ1 + θ2)

)

.

Clearly, if we interchange θ1 and θ2, we recover the same result. Hence, all products of
SO(2) elements are commutative, and we conclude that SO(2) is an abelian group.

(c) The group O(2) consists of all 2× 2 orthogonal matrices, with no restriction on the
sign of its determinant. Is O(2) abelian or non-abelian? (If the latter, exhibit two O(2)
matrices that do not commute.)

The matrix Q given in eq. (24) is also an element of O(2). An element of O(2) that is not
an element of SO(2) is

(
1 0
0 −1

)

.

But this matrix does not commute with Q. In particular,

(
cos θ sin θ

− sin θ cos θ

)(
1 0
0 −1

)

=

(
cos θ − sin θ

− sin θ − cos θ

)

,

whereas (
1 0
0 −1

)(
cos θ sin θ

− sin θ cos θ

)

=

(
cos θ sin θ
sin θ − cos θ

)

.

Hence, we conclude that O(2) is a non-abelian group.

15


