The Lorentz and Poincaré groups

By Joel Oredsson
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The Principle of Special Relativity:
The laws of nature should be covariant with respect to the transformations
between inertial reference frames.
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We find that the transformation f(x) is linear and the
transformation matrix has det=+1.
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Group multipication law

g(A',a)g(A,a) =g(AN'A,AN'a+a')



We can now define two types of transformations.

Poincaré transformations: x'M = Aﬁxv +a"
e Translations
e |orentz Transformations

Lorentz transformations: "= A" x"
Or homogeneous Lorentz/

Poincaré transformations.

e Rotations

e Boosts



The Lorentz group:
The group of all Lorentz transformations, restricted by

ngAMPAVG = gp(j

= (A} =1+ ) AN, =1 det(A) = =1

The full Lorentz group consists of 4 disconnected pieces.



We can decompose the Lorentz group as a cosets of the proper
orthocronous(restricted) Lorentz Group.

L' :det(A) =LA =1
L=r'UprLUTL UPTL!

Orthocronous Antichronous,T
0 0
A, =1 AN,=-1
Proper No reversals Time reversals
detA =1
Improper,P Space inversion Space and time
detA = -1 inversions.




The group name for the restricted Lorentz group is SO(1,3). It
can be represented by a 4x4 matrix.

8o =8 N'pNo =g, (0" +0!)(0, +w))+O0(w”)
=8, + W, +O,, +O(w?)

= 0, =—0,,

The parameter matrix is antisymmetric with 6 independent
variables. 3 for boosts, 3 for rotations.



The generators of SO(1,3) explicitly:
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A general finite Lorentz transformation can then be written as

Ly
A(a))=exp[—5a)“ Sl
Where
1 .
J. = Eg’f"s M K, =S,

1 l

And the Lie algebra for the Lorentz group is
[J,,J 1=ie™],
[K,.J 1=ie"K,

[K,.K 1=-ie"J,



If we compexify SO(1,3) to SO(4,C) we find something
Interesting

1 1
M, ==, +iK, N,=—(J, -iK,
=5 (i +iK) =5 (i —iK))
[M,.M,]=ic"M,
AN =igty, SO =sI2.0@sI2.0)
M,N,]1=0

We know the representations of sl(2,C) so we can use these to
find a represention of SO(1,3). These will be labeled by the
highest weight (j,j’) where each ranging from 0, %, 1, 3/2, 2,
... . Each represantation being

(2j+1)(2j’+1) dimensional.



The simplest representations:

dim

1 (0,0) Scalar

2 (75,0) Left handed Weyl spinor
2 (0,%) Right handed Weyl spinor
4 (%2,%) 4 vector

For example the Weyl spinors are 2 dimensional objects
transforming as -

—

Y, 9/\% = exp[(—i@ — ﬁ) Y,

o
2-
o

Yr *A% = exp[(—ié + ﬁ) Yy

2-

With these we can create the reducible Dirac spinor (4dim)

oefon]-io)elo3)



Relationship to SL(2,C) 0

. . LU X u X _-x3 —X1+ix2
Consider the mapping f :x" =X =0,x" =

1 ) 3
—X —IX XO+X

A linear transformation on X preserves its determinant which corresponds
to the length of x.

det(X) = (x°)? = ¥
A Lorentz transformation on x can then be mapped into a transformation on

. X=Ax < X'= AXA'

Lorentz transformation

If we fix detA=1, then every A belongs to SL(2,C). The transformation of A
preserves hermicity of X.

X'=x"o,=A(A), x" 0,



To find the matrices we can consider infinitesimal
transformations to find the generators of the transformation in

the SL(2,C) representation. For example consider a rotation
about the z-axis.

1 1 2 2 2 1
x"=x —06x ", x'""=x"+0x

A=1-i60J,
X=0,x"+ 06(-0,x* +0,x") = AXA" = X - i66(J X - XJ,')

Compare both sides to find



A rotation by an angle theta around an axis n corresponds to
in SL(2,C) the matrix(SU(2))

0. -
A= iexp[—iafz- O]

Similarly, a boost in the n direction by rapidity xi can be
expressed by

A= iexp[—aﬁ O]
So we do have a homomorphism between SO(1,3) and SL(2,C).

Noticing the + sign we see that the mappingis 1 to 2 and
similarly to SU(2) and SO(3) we have

SO*(1,3) = SL(2,0)/ Z,



Generators of the Poincaré group

An element of the Poincaré group a
can be expressed as a 5x5 matrix g. A a
It is a 10 parameter group. g(a,N\) = a* | =T(a)g(0,A)
6 for a Lorentz transformation a
4 for translations 0O 0 0 0 1

The Lie algebra is given by

P,P,1=0

:P‘uaJ)Lg] = l(P)LgMO - Pagu)»)

:Juv 7‘])\,0'] = i(J)WgMo - Jo*vgy)» + J;Mgvo - J,uagv)n)

Translations is an invariant subgroup.
The Poincaré group is a semidirect product of translations and Lorentz
transformations.



Transformations in guantum theories

In a Hilbert space the symmetry should manifest itself in the
form of unitary operators.
Lorentz Group is non compact -> no finite dimensional
unitary irreps

y) =U(Aa)y)
U(A,a) =U,(a)U,(A)
UA',a Y UA,a)=UA'AN,AN'a+a')



One particle states

In a unitary transform the generators are hermitian. We can express the

physical state vectors as eigenvectors to the energy-momentum operator.
~ib P " —ib p "

PY|p,0) = p"|p,o)y=e"""" |p,o)=e""" | p,0)

The state vectors are then labeled by the 4 momenta and sigma: all

remaining degrees of freedom.
We know how P transforms during a Lorentz Transformation.

U™ (A)P'U(A) = A: P*

PU(A)|p,o) = UA)| U (MP*U(A) | p.o) = A p"U(A)| p.o)

= U(A)|p,0) = Y C,,(A,p) Ap.0)



Method of induced representations

e Choose a standard 4 momentum vector

e |dentify its Little group

e Find the irreducible representations of the Little group.

e  For each of these, apply Lorentz transformations to get the full
representation.

So for every W that
WH k" =k"
We have
uw)

k.0) = Y D,,(W)|k.0)

U(A)

p.0) = X, Dy o (W (A.p))| Ap.0)

W(A,p) =L (Ap)AL(p) k =p—=Ap — k

L(p) A L' (Ap)

We can label the standard momentum vectors with the eigenvalue of the
Casimir operators.

u u
P“P, WwW,
Where W is the Pauli-Lubanski vector. W* = lg“VP"vaPa



2 .0

po,p p" Little Group
a)Time - like p°=m”>>0,p°’ >0 (m,0,0,0) SO(3)
b)Time - like p°=m”>0,p’ <0 (-m,0,0,0) SO(3)
c)Light - like p>=0,p° >0 (0,0,0,0) E(2)
d)Light — like p>=0,p’ <0 (-0,0,0,0) EQ)
e)Space - like p’=-n"<0 (0,0,0,n) SO(2,1)
f)null —vector p"=0 (0,0,0,0) SO(3,1)

So for the case a we have a massive particle labeled by mass,
intrinsic spin, momentum and helicity.

‘m,s,f?,(ﬁ



Massive Massless

Familiar SU(2) representations from Has quantized helicity.
ordinary QM. s=0,+1/2,+1,... 1 degree of freedom
s=0,1/2,1,3/2... (2s+1) degrees
of freedom The familiar photon is a mix of two
states with helicities +1.
— ~ibp g ; u
T(b)‘p,0> =e ‘p,a> T(b)‘p,o> _ o p,a>

Alp.o) = Y| Ap.0)D'so (R(A, p)) Al p,o) =| Ap.a)e

(o)



What we have found:

The Poincaré group is a 10 dimensional non-compact Lie group

with the Lorentz group as a subgroup.

The Lorentz group can be divided into 4 cosets of the proper
Lorentz group.lt is a doubly connected group with SL(2,C) as the
universal covering group. SO(1,3)=SL(2,C)/Z_2

The irreducible finite representations (j,j’) can be used to construct
fields that have well defined transformation rules under Poincare
transformations.

The infinte irreps are used to characterize all possible particle states.
Massive particles is characterized by spin j and have (2j+1) degrees of freedom.
Massless particles are labeled by helicity xinteger/half-integer.
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