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Dirac quantization condition:

qg = 2πn, n ∈ Z (1)

q: electric charge

g : magnetic charge

Existence of magnetic monopoles would imply charge quantization



Dirac Monopoles

Suppose we have

B =
g

4πr 2
r̂ .

The associated vector potential is singular, not only at the origin,
but along a “Dirac string” extending from the origin to infinity.
Requiring that the Dirac string not be physically observable leads
to the quantization condition.



Group theoretic approach
Consider a theory with a gauge group G spontaneously broken
down to a subgroup H by a Higgs field Φ. Let M0 be the vacuum
manifold of Φ:

M0 = {Φ|V (Φ) = Vmin} . (2)

We can choose a particular point Φ0 in M0, and then

M0 = {gΦ0|g ∈ G} = orbitG (Φ0) (3)

The little group of Φ0 with respect to G is

H = {g ∈ G |gΦ0 = Φ0} . (4)

Since

orbitG (Φ0) ∼= G/H, (5)

we have

M0
∼= G/H. (6)



In the Higgs vacuum, the only non-zero component of the gauge
field tensor is F µν , which satisfies Maxwell’s equations (no
magnetic monopoles).

But Φ need not satisfy the vacuum condition everywhere. This can
give rise to monopoles.



Magnetic flux through a surface

Consider the magnetic flux, call it gΣ, through some closed surface
Σ on which the Higgs potential is minimized:

gΣ =

∫
Σ

B · dΣ. (7)

Turns out this depends only on the values of Φ on the surface Σ.
And in fact, continuous deformations of Φ do not affect gΣ. So
actually gΣ depends only on the homotopy classes of the maps

Φ : Σ→M0



Quantization

To have finite energies, Φ(~r) must approach a point on M0 as r
goes to infinity:

lim
r→∞

Φ(~r) ≡ Φ∞(r̂) ∈M0 (8)

where ~r = r r̂ is a position vector in spherical coordinates.

In d + 1 dimensions, r̂ ∈ Sd−1 (e.g. in 3+1 dimensions, r̂ ∈ S2).



Take the surface surface at infinity (Sd−1, where Φ satisfies the
vacuum condition) as the surface Σ.Then the flux gSd−1 depends
on the homotopy classes of the maps

Φ∞ : Sd−1 →M0. (9)

We call the group of these homotopy classes πd−1(M0). Since
M0
∼= G/H, we are interested in the group

πd−1(G/H)



If (and only if) all field configurations of finite energy are
homotopically equivalent (i.e. may be continuously deformed into
each other), then we have πd−1(G/H) = {e}. If, however,
πd−1(G/H) 6= {e}, then we have so-called “topological solitons,”
or monopoles. That is, we have field configurations of finite energy
which cannot be continuously deformed into one another.



’t Hooft-Polyakov monopoles

Gauge group G = SO(3), broken by Higgs v.e.v. φ0 = (0, 0, v)

Remaining symmetry group is

H = rotations about the φ axis = SO(2) ∼= U(1)

Generators of G are T a for a = 1, 2, 3.

Generator of H is φaT a/v

Associate the U(1) symmetry with electromagnetism. Electric
charge is then Q = e~

v φ
aT a (and the T a have half-integer

eigenvalues).



’t Hooft-Polyakov, continued

Then M0
∼= G/H = SO(3)/SO(2) is isomorphic to the two-sphere

S2. In 3 + 1 dimensions,

πd−1(G/H) = π2

(
S2
)

= Z.

We can think of the equivalence classes as being characterized by
the number of times, N, that a two-dimensional surface is wrapped
around the sphere M0.

This number N completely determines the homotopy class.



How is this related to quantization of charge?

If G is simply connected, then π2(G/H) ∼= π1(H). SO(3) is not
simply connected, but we can replace it like SU(2) to proceed.

In this case we just need to consider closed paths in H. For the
case of SO(3) broken to U(1), these have the form

h(s) = exp

(
iq

∫
Σ

B · dΣ

)
= e iqg , 0 ≤ s ≤ 1, (10)

and the requirement h (0) = h(1) leads to the Dirac quantization
condition:

qg = 2πN, N ∈ Z. (11)



Conceptualizing topological solitons

As an illustration of this idea, consider the Sine-Gordon model,
which can be thought of as a long clothesline of identical pegs,
connected to each other by identical springs, and acted on by
gravity.

Ground state: they all hang straight down.

A stable state of finite non-zero energy: the pegs are twisted by an
integer multiple of 2π, but the pegs at infinity in either direction
hang straight down. Would take infinite energy to flip the pegs at
infinity, so this state never decays. This is called a ”kink” or
“soliton”.
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