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Let A be a complex d× d antisymmetric matrix, i.e. AT = −A. Since

det A = det (−AT) = det (−A) = (−1)d det A , (1)

it follows that det A = 0 if d is odd. Thus, the rank of A must be even. In these
notes, the rank of A will be denoted by 2n. If d ≡ 2n then det A 6= 0, whereas if
d > 2n, then detA = 0. All the results contained in these notes also apply to real
antisymmetric matrices.

Theorem 1: If A is an even-dimensional complex invertible 2n× 2n antisymmetric
matrix, then there exists an invertible 2n× 2n matrix P such that:

A = PTJP , (2)

where the 2n× 2n matrix J written in 2× 2 block form is given by:

J ≡ diag

{(
0 1

−1 0

)
,

(
0 1

−1 0

)
, · · · ,

(
0 1

−1 0

)}

︸ ︷︷ ︸
n

. (3)

If A is a complex singular antisymmetric d × d matrix of rank 2n (where d is either
even or odd and d > 2n), then there exists an invertible d× d matrix P such that

A = PTJ̃P , (4)

and J̃ is the d× d matrix that is given in block form by

J̃ ≡




J O

O O


 , (5)

where the 2n × 2n matrix J is defined in eq. (3) and O is a zero matrix of the
appropriate number of rows and columns.

Proof: Details of the proof of this theorem are given in Appendix B.

For any even-dimensional complex 2r× 2r antisymmetric matrix A, we define the
pfaffian of A, denoted by pfA, by:

pf A =
1

2rr!

∑

p∈S2r

(−1)p Ai1i2Ai3i4 · · ·Ai2r−1i2r , (6)

where the sum is taken over all permutations

p =

(
1 2 · · · 2r
i1 i2 · · · i2r

)
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and (−1)p is the sign of the permutation p ∈ S2r. If A is an odd-dimensional complex
antisymmetric matrix, the corresponding pfaffian is defined to be zero. The following
theorem relates the pfaffian and determinant of an antisymmetric matrix.

Theorem 2: If A is a complex antisymmetric matrix, then

detA = [pf A]2 .

Proof: First, we assume that A is a complex invertible 2n×2n antisymmetric matrix.
For n = 1, pf A = A12 and det A = (A12)

2, so the theorem clearly holds. Hence,
assume that n > 1. Using the results of Theorem 1, it follows that

detA = det(PTJP ) = [detP ]2 detJ = [detP ]2 , (7)

since eq. (3) implies that det J = 1. To compute the pfaffian of A, we use eq. (2) to
write

Aij =
2n∑

k=1

2n∑

ℓ=1

P k
iJkℓP

ℓ
j (i, j = 1, 2, . . . , 2n)

= P 1
iP

2
j − P 2

iP
1
j + P 3

iP
4
j − P 4

iP
3
j + · · ·+ P 2n−1

iP
2n

j − P 2n
iP

2n−1
j , (8)

We now substitute eq. (8) into the definition of the pfaffian [eq. (6) with r = n]. Exam-
ine the possible cross-terms that appear in the sum given by eq. (6). Let j1, j2, . . . , jn
be n odd integers (not necessarily distinct) taken from the set {1, 3, . . . , 2n− 1}. As
an example, choose j1 = j2 = k for some fixed odd integer k. Then,

1

2n

∑

p∈S2n

(−1)p (P k
i1P

k+1
i2 − P k

i2P
k+1

i1)(P
k
i3P

k+1
i4 − P k

i4P
k+1

i3)

×(P j3
i5P

j3+1
i6 − P j3

i6P
j3+1

i5) · · · (P
jn

i2n−1
P jn+1

i2n − P jn
i2nP

jn+1
i2n−1

)

=
∑

i1,i2,...,i2n

P k
i1P

k+1
i2P

k
i3P

k+1
i4P

j3
i5P

j3+1
i6 · · ·P

jn
i2n−1

P jn+1
i2nǫ

i1i2···i2n = 0 , (9)

since interchanging either i1 ↔ i3 or i2 ↔ i4 yields a term of the opposite sign in the
sum. Hence, there are an equal number of positive and negative terms that cancel in
pairs, and the sum in eq. (9) vanishes as indicated above. It follows that:

pf A =
1

2nn!

∑

p∈S2n

(−1)p (P k
i1P

k+1
i2 − P k

i2P
k+1

i1)(P
k
i3P

k+1
i4 − P k

i4P
k+1

i3)

× · · · (P k
i2n−1

P k+1
i2n − P k

i2nP
k+1

i2n−1
)

=
∑

i1,i2,...,i2n

P 1
i1P

2
i2P

3
i3P

4
i4 · · ·P

2n−1
i2n−1

P 2n
i2nǫ

i1i2···i2n

= detP , (10)
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where the factor of [n!]−1 is canceled out precisely by the n! identical cross-terms in
which all superscript indices of the P ’s are distinct. The final step of eq. (10) follows
from the definition of the determinant. Inserting the result of eq. (10) into eq. (7)
then yields

detA = [pf A]2 , (11)

which completes the proof for the case of invertible A. If A is a 2r × 2r singular
antisymmetric matrix of rank 2n (where r > n), then eq. (8) is replaced by:

Aij =
2r∑

k=1

2r∑

ℓ=1

P k
iJ̃kℓP

ℓ
j =

2n∑

k=1

2n∑

ℓ=1

P k
iJkℓP

ℓ
j (i, j = 1, 2, . . . , 2r , where r > n)

= P 1
iP

2
j − P 2

iP
1
j + P 3

iP
4
j − P 4

iP
3
j + · · ·+ P 2n−1

iP
2n

j − P 2n
iP

2n−1
j , (12)

where we have used eq. (5) to express J̃ in terms of J . In this case, when we substitute
eq. (12) into eq. (6) we see that some of the products P kP k+1 will necessarily be
repeated in each term in the sum because r > n. Hence, each resulting term is of a
form similar to the one given by eq. (9) and therefore vanishes, and we conclude that
pf A = 0. Since A is singular, detA = 0, so eq. (11) is also satisfied in this case.

Finally, if A is an odd-dimensional (complex) antisymmetric matrix, then pfA = 0
by definition and detA = 0 as a result of eq. (1). Hence again eq. (11) is satisfied.
Theorem 2 is now proven for any complex antisymmetric matrix.

It is possible to rewrite the above proof using the formalism of exterior products.
The derivation of Theorem 2 in this language can be found in Linear algebra via

exterior products, by Sergei Winitzki (published by lulu.com, 2010).1 The proof
that I have provided above is simply a “translation” of Winitzki’s proof of Theorem 2
into a language that is more familiar to physics graduate students.

APPENDIX A: Bilinear forms

In this appendix, we introduce the concept of bilinear forms2 that will be useful
for proving Theorem 1 in Appendix B.

Let V be a vector space over the field F . In what follows, we shall assume that
F = C (although the results of this appendix also apply if F = R). A bilinear form

on V is a function f that assigns to each ordered pair of vectors v, w ∈ V a scalar
f(v,w) ∈ F such that

f(cv1 + v2,w) = cf(v1,w) + f(v2,w) ,

f(v, cw1 +w2) = cf(v,w1) + f(v,w2) ,

1See http://sites.google.com/site/winitzki/linalg#TOC-Get-the-book for a free copy of
this book.

2See, e.g., Kenneth Hoffman and Ray Kunze, Linear Algebra (Prentice Hall, Inc., Englewood
Cliffs, N.J., 1961), chapter 9.
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for any constant scalar c ∈ F .
Assume that V is a finite-dimensional vector space of dimension n. Every bi-

linear form can be represented by a matrix with respect to some ordered basis
B = {e1 , e2 , . . . , en}. That is, every bilinear form can be written as:

f(v,w) = Aijv
iwj , (13)

where the Einstein summation convention for repeated indices is employed. In eq. (13),
we have written v ≡ viei and w ≡ wjej , where vi [wj] are the components of the
vector v [w] with respect to the basis B, and

Aij ≡ f(ei , ej) . (14)

Aij is the matrix representation of the bilinear form f with respect to the basis B.
Suppose we choose a different basis, B′ = {f1, , f2 , . . . , fn}, such that

fj = P i
jei ,

for some non-singular (invertible) matrix P . If v′ j are the components of v with
respect to basis B′, then

v = v′ jfj = v′ jP i
jei = viei ,

which yields
vi = P i

jv
′ j .

Hence, it follows that

f(v,w) = Aijv
iwj = AijP

i
kv

′ kP j
ℓw

′ ℓ ≡ A′

kℓv
′ kw′ ℓ ,

where
A′

kℓ ≡ P i
kAijP

j
ℓ . (15)

In matrix language, eq. (15) can be written as

A′ ≡ PTAP . (16)

Any two matrices A and A′ related as in eq. (16) are said to be congruent.
We now specialize to skew-symmetric bilinear forms (which are called antisym-

metric by physicists). A bilinear form is called skew-symmetric if

f(v,w) = −f(w, v) for all v,w ∈ V .

Note that this definition implies that:

f(v, v) = 0 for all v ∈ V ,
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and vice versa.3 If V is a finite-dimensional vector space, then a bilinear form f is
skew-symmetric if and only if it is represented by an antisymmetric matrix AT = −A

with respect to any ordered basis B. This result follows immediately from eqs. (13)
and (14). In particular, eq. (16) implies that if A is antisymmetric, then so is any
matrix congruent to A.

APPENDIX B: Proof of Theorem 1

In this appendix, we provide two proofs of the following theorem.

Theorem 1: If A is an even-dimensional complex invertible 2n× 2n antisymmetric
matrix, then there exists an invertible matrix P such that:

A = PTJP ,

where the matrix J written in 2× 2 block form is given by:

J ≡ diag

{(
0 1

−1 0

)
,

(
0 1

−1 0

)
, · · · ,

(
0 1

−1 0

)}

︸ ︷︷ ︸
n

.

If A is a complex singular antisymmetric d × d matrix of rank 2n (where d is either
even or odd and d > 2n), then there exists an invertible d× d matrix P such that

A = PTJ̃P ,

and J̃ is the d× d matrix that is given in block form by

J̃ ≡




J O

O O



 , (17)

where the 2n × 2n matrix J is defined in eq. (3) and O is a zero matrix of the
appropriate number of rows and columns.

Proof 1:4 If A = 0 (corresponding to a zero bilinear form), then the theorem is
trivially satisfied. Thus, we assume that f is a non-zero skew-symmetric bilinear
form acting on a d-dimensional vector space V , which is represented by the d × d

antisymmetric matrix A of rank 2n (such that 2n ≤ d) with respect to some ordered
basis B. We shall prove that there exists another ordered basis B′ with respect to
which the skew-symmetric bilinear form f is represented by J if 2n = d and by J̃ if
2n < d. Theorem 1 will then follow immediately from eq. (16).

3Note that if f(v,v) = 0 for all v ∈ V , then it follows that f(v,w) = −f(w,v) for all v,w ∈ V .
This is easily proved by noting that 0 = f(v +w,v +w) = f(v,w) + f(w,v).

4This proof makes use of the material introduced in Appendix A. See, e.g., Kenneth Hoffman
and Ray Kunze, Linear Algebra (Prentice Hall, Inc., Englewood Cliffs, N.J., 1961), section 9.3.
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Since f 6= 0, there are vectors v, w ∈ V such that f(v,w) 6= 0. One can normalize
the vector v such that f(v,w) = −f(w, v) = 1. Let x be any vector in the subspace
spanned by v and w. Then, x = av + bw for some a, b ∈ C. In particular,

f(x, v) = f(av + bw, v) = bf(w, v) = −b ,

f(x,w) = f(av + bw,w) = af(v,w) = a , (18)

so that one can write:
x = f(x,w)v − f(x, v)w .

In particular, note that v and w are necessarily linearly independent, since if x = 0

then f(x, v) = f(x,w) = 0 by the properties of the bilinear form.
Let V1 be the two-dimensional subspace spanned by v and w. Then, the matrix

representation of the bilinear form restricted to the subspace V1 is given by
(

0 1
−1 0

)
.

Let Y be defined as the subspace of V such that

Y = {y ∈ V | f(y,x) = 0 for every x ∈ V1} .

I shall now prove that V = V1 ⊕ Y . This requires that two conditions are satisfied:
(i) V1 ∩ Y = {0}, where 0 is the zero vector; and (ii) any vector u ∈ V can be
written uniquely as u = v+y, where v ∈ V1 and y ∈ Y . Condition (i) is satisfied by
the definition of Y , namely if v and w span V1, then y ∈ Y implies that f(y, v) =
f(y,w) = 0. But the only vector y ∈ V1 that satisfies the latter condition is the zero
vector. Next, let u ∈ V and define:

y = u− x , with x ≡ f(u,w)v − f(u, v)w ,

where v and w span V1. A simple computation shows that f(y, v) = f(y,w) = 0.
For example,

f(y,w) = f(u,w)− f(x,w) = f(u,w)− f(u,w)f(v,w) = f(u,w)− f(u,w) = 0 ,

where we have used f(v,w) = 1. Likewise,

f(y, v) = f(u, v)− f(x, v) = f(u, v) + f(u, v)f(w, v) = f(u, v)− f(u, v) = 0 ,

where we have used f(w, v) = −1. These results prove that y ∈ Y . Thus, we have
shown that u = x + y is the unique decomposition of u ∈ V into the sum of two
vectors x ∈ V1 and y ∈ Y . Hence, V = V1 ⊕ Y as advertised. With respect to
the basis {v , w , y1 , y2 , . . . , yd−2}, where {y1 , y2 , . . . , yd−2} is a basis for the
subspace Y , the matrix representation of f is




0 1 O
T

−1 0 OT

O O B


 , (19)
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where O [OT] is a (2n − 2)-dimensional column [row] vector of zeros and B is the
(d − 2)× (d − 2) antisymmetric matrix that represents the skew-symmetric bilinear
form f restricted to the subspace Y .

If B is a (d−2)×(d−2) zero matrix, then we are done and the theorem is proven.
Otherwise, B represents a non-zero skew-symmetric bilinear form f restricted to the
subspace Y . We can therefore repeat the above analysis starting with the subspace Y
and the corresponding matrix representation B. Suppose that d = 2n, in which case
the antisymmetric matrices A and B are invertible. Then, by induction, we will end
up after n steps with the decomposition: V = V1⊕V2⊕· · ·⊕Vn, with a corresponding
basis B′ = {v1 , w1 , v2 , w2 , . . . , vn , wn}, with v1 ≡ v and w1 ≡ w from step 1,
etc. With respect to this basis, the matrix representation of the skew-symmetric
bilinear form f is given by:

J =




0 1

−1 0

0 1

−1 0

. . .
. . .

0 1

−1 0




, (20)

where the 2 × 2 matrix block
(

0 1
−1 0

)
appears n times along the diagonal blocks and

all the elements of the off-diagonal 2× 2 blocks are zero.
If 2n < d, then after n steps, we must find that V = V1⊕V2⊕· · ·⊕Vn⊕Z, where

the skew-symmetric bilinear form f restricted to the subspace Z vanishes exactly.5

In this case, the matrix representation of f is given by

J̃ ≡




J O

O O


 ,

where the 2n × 2n matrix J is defined in eq. (20) and O is the zero matrix of the

appropriate number of rows and columns. Note that if d is odd, then J̃ must have
at least one complete row and one complete column of zeros, as expected since the
determinant of any odd-dimensional antisymmetric matrix must vanish [cf. eq. (1)].

Finally, using eq. (16), we see that if d = 2n then J is congruent to A, and if

d > 2n then J̃ is congruent to A. The proof of Theorem 1 is complete.

5If f restricted to the subspace Z were non-vanishing, then we could carry out another step in
the induction, which would contradict the assumption that the rank of A is equal to 2n.
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Proof 2:6 For completeness, we provide a second proof of Theorem 1 based on a
direct analysis of the antisymmetric matrix A. This proof makes use of the concept
of the elementary row and column operations.7 An elementary row operation consists
of one of the following three operations:

1. Interchange two rows (Ri ↔ Rj for i 6= j);

2. Multiply a given row Ri by a non-zero constant scalar (Ri → cRi for c 6= 0);

3. Replace a given row Ri as follows: Ri → Ri + cRj for i 6= j and c 6= 0.

Each elementary row operation can be carried out by the multiplication of an appro-
priate non-singular matrix (called the elementary row transformation matrix) from
the left.8 Likewise, one can define elementary column operations by replacing “row”
with “column” in the above. Each elementary column operation can be carried out
by the multiplication of an appropriate non-singular matrix (called the elementary
column transformation matrix) from the right.8 Finally, an elementary cogredient op-

eration9 is an elementary row operation applied to a square matrix followed by the
corresponding elementary column operation.10

The key observation is the following. If A and B are square matrices, then A is
congruent to B if and only if B is obtainable from A by a sequence of elementary
cogredient operations.11 That is, an invertible matrix R exists such that B = RTAR,
where RT is the non-singular matrix given by the product of the elementary row
operations that are employed in the sequence of elementary cogredient operations.

With this observation, it is easy to check that starting from a complex d × d

antisymmetric matrix, one can apply a simple sequence of elementary cogredient
operations to convert A into the form given by eq. (19), where B is a (d−2)× (d−2)
complex antisymmetric matrix. (Try it!) If B = 0, then we are done. Otherwise, we
repeat the process starting with B. Using induction, we see that the process continues
until A has been converted by a sequence of elementary cogredient operations into
J or J̃ . In particular, if the rank of A is equal to 2n, then A will be converted into
J̃ after n steps. Hence, in light of the above discussion, it follows that A = PTJP ,
where [PT]−1 is the product of all the elementary row operation matrices employed
in the sequence of elementary cogredient operations used to reduce A to its canonical
form given by J if d = 2n or J̃ if d > 2n. That is, Theorem 1 is proven.12

6More details can be found in Howard Eves, Elementary Matrix Theory (Dover Publications,
Inc., New York, 1980).

7These concepts are discussed in many elementary texts on matrices and linear algebra. See, e.g.,
Eves, op. cit.

8 Note that elementary row and column transformation matrices are always invertible.
9The term cogredient operation employed by Eves, op. cit., is not commonly used in the modern

literature. Nevertheless, I have introduced this term here as it is a convenient way to describe the
sequential application of identical row and column operations.

10In this context, the corresponding column operation refers to carrying out the same operation
on the columns that had been performed previously on the rows.

11This is Theorem of 5.3.4 of Eves, op. cit.
12For further details, see section 5.4 of Eves, op. cit.
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