Group Applications to Band Theory

Andrew Galatas

Group Theory, Spring 2015

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

k · p Perturbation Theory Selection Rules in Action

Summary

Introduction to Crystals

Bravais Lattices Brillouin Zones

Groups and Basic Band Theory Space Group Representations Simple Cubic Example

Perturbation on Bands

 $\boldsymbol{k}\cdot\boldsymbol{p}$ Perturbation Theory Selection Rules in Action

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

k · p Perturbation Theory Selection Rules in Action

Introduction to Crystals

Bravais Lattices

Brillouin Zones

Groups and Basic Band Theory Space Group Representations Simple Cubic Example

Perturbation on Bands

 $\boldsymbol{k}\cdot\boldsymbol{p}$ Perturbation Theory Selection Rules in Action

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

k · **p** Perturbation Theory Selection Rules in Action

Space Groups

- Crystals are characterized by space groups
- Symmetry under translations and point group operations
- 73 total symmorphic (simple) space groups

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

 k · p Perturbation Theory
 Selection Rules in Action

Bravais Lattices

Only 14 Bravais lattices

http://www.seas.upenn.edu/

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

k · p Perturbation Theory Selection Rules in Action

Summary

A D P 4 目 4 目 + 4 国 P 4 国 P
 A P

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory Space Group Representations Simple Cubic Example

Perturbation on Bands

k · **p** Perturbation Theory Selection Rules in Action

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

k · p Perturbation Theory Selection Rules in Action

Summary

Reciprocal Lattice Vectors

- Solutions to $e^{i\mathbf{K}\cdot\mathbf{r}} = 1$
- Typically form their own Bravais lattice
- Is essentially the Fourier space equivalent of the real space crystal
- Will be related to periodicity of electron plane waves

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

 k · p Perturbation Theory
 Selection Rules in Action

Brillouin Zones

- Smallest repeating unit in reciprocal space
- Collection of reciprocal vectors that are closest to the 0 vector
- Behavior of electrons in periodic potential characterized by their properties in the first B-Z
- Second, third, etc. Brillouin zones also exist (this periodicity gives rise to bands)

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

k · p Perturbation Theory Selection Rules in Action

Brillouin Zones

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

k · p Perturbation Theory Selection Rules in Action

Summary

Bloch's Theorem

$$\Psi_{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{\mathbf{k}}(r)$$

- Crucially, u_k(r) has (at least some of) the same space group symmetries of the overall reciprocal lattice
- This leads to $\Psi_{\mathbf{k}}(\mathbf{r} + \mathbf{T}) = \Psi_{\mathbf{k}}(\mathbf{r})e^{i\mathbf{k}\cdot\mathbf{T}}$
- ► For nearly free electrons (NFE), $u_{\mathbf{k}}(r) \approx \frac{1}{\sqrt{\Omega_r}}$
- IMPORTANTLY, $E_{\mathbf{k}+\mathbf{K}} = E_{\mathbf{k}}$

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

 k · p Perturbation Theory
 Selection Rules in Action

Summary

A D F 4 目 F 4 E F 4 E F 9 Q Q

Introduction to Crystals

Bravais Lattices Brillouin Zones

Groups and Basic Band Theory Space Group Representations

Simple Cubic Example

Perturbation on Bands

 $\mathbf{k}\cdot\mathbf{p}$ Perturbation Theory Selection Rules in Action

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

k · p Perturbation Theory Selection Rules in Action

Space Groups on Reciprocal Vectors

$$\mathbf{F}_{\mathbf{i}} \cdot \mathbf{K}_{\mathbf{j}} = 2\pi N_{ij}$$

$$\triangleright \ \mathcal{O}T_i \cdot \mathbf{K}'_j = 2\pi N_{ij} \Rightarrow \mathbf{K}'_j = \mathcal{O}^{-1}\mathbf{K}_j$$

- The group of all space group transformations which send k to k + K is the space group of the wave vector
- ► For a general Bloch wavefunction, E_{Ok} ≠ E_k, BUT if k is a point of symmetry, all equivalent vectors are degenerate

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

k · p Perturbation Theory Selection Rules in Action

Representations of Point Groups

- Classes of a point group are equivalent transformations, such as 4-fold rotations or inversions
- Irreducible representations are primarily derived from the Great Orthogonality Theorem
- Irreps of one point group might be decomposable in another related point group
- For a given irrep and Bloch eigenfunction,

$$\mathcal{O}_{R_{\mathbf{k}}} \Psi_{\mathbf{k}\lambda}^{(i)}(\mathbf{r}) = \sum_{\mu} \Psi_{\mathbf{k}\mu}^{(i)}(\mathbf{r}) D^{(i)}(R_{\mathbf{k}})_{\mu\lambda}$$

A D F 4 目 F 4 E F 4 E F 9 Q Q

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

 k · p Perturbation Theory
 Selection Rules in Action

Character Table for O_h

Repr.	Basis Functions	E	$3C_{4}^{2}$	$6C_4$	$6C_2$	$8C_3$	i	$3iC_4^2$	$6iC_4$	$6iC_2$	$8iC_3$
Γ_1	1	1	1	1	1	1	1	1	1	1	1
Γ_2	$\begin{cases} x^4(y^2 - z^2) + \\ y^4(z^2 - x^2) + \\ z^4(x^2 - y^2) \end{cases}$	1	1	-1	-1	1	1	1	-1	-1	1
Γ_{12}	$\begin{cases} x^2 - y^2 \\ 2z^2 - x^2 - y^2 \end{cases}$	2	2	0	0	-1	2	2	0	0	-1
Γ_{15}	x, y, z	3	-1	1	-1	0	-3	1	-1	1	0
Γ_{25}	$z(x^2 - y^2)$, etc.	3	-1	-1	1	0	-3	1	1	-1	0
Γ_1'	$\begin{cases} xyz[x^4(y^2 - z^2) + \\ y^4(z^2 - x^2) + \\ z^4(x^2 - y^2)] \end{cases}$	1	1	1	1	1	-1	-1	-1	-1	-1
Γ'_2	xyz	1	1	-1	-1	1	-1	-1	1	1	-1
Γ_{12}^{f}	$xyz(x^2 - y^2)$, etc.	2	2	0	0	-1	-2	-2	0	0	1
Γ'15	$xy(x^2 - y^2)$, etc.	3	-1	1	-1	0	3	-1	1	-1	0
Γ'_{25}	xy, yz, zx	3	-1	-1	1	0	3	-1	-1	1	0

Dresselhaus

Group Applications to Band Theory

Andrew Galatas

ntroduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

k · p Perturbation Theory Selection Rules in Action

Compatibility Relations

- Band degeneracies are lifted in moving from a wave vector of high symmetry to one with lower
- The manner in which bands are split is characterized by compatibility relations, illustrating irreducible components of now-reducible representations

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

 k · p Perturbation Theory
 Selection Rules in Action

Summary

Introduction to Crystals

Bravais Lattices Brillouin Zones

Groups and Basic Band Theory Space Group Representations Simple Cubic Example

Perturbation on Bands

 $\mathbf{k}\cdot\mathbf{p}$ Perturbation Theory Selection Rules in Action

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

k · p Perturbation Theory Selection Rules in Action

An Example with a Simple Lattice

Group Applications to Band Theory

Andrew Galatas

ntroduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

k · p Perturbation Theory Selection Rules in Action

Summary

<ロト
(ロト
(目)
(日)
(H)
(H)

An Example with a Simple Lattice

		C GALLAN								
	-		Compatik	ility Relation	ons Between	ι Γ and	Δ, Λ, Σ			
	Γ_1^+	Γ_2^+	Γ_{12}^+	Γ_15	Γ_{25}^+	Γ_1^-	Γ_2^-	Γ_{12}^{-}	Γ ⁺ ₁₅	Γ_{25}^{-}
(100)	Δ_1	Δ_2	$\Delta_1 \tilde{\Delta}_2$	$\Delta_1 \Delta_5$	$\Delta_{2'}\Delta_5$	$\Delta_{1'}$	$\Delta_{2'}$	$\Delta_{1'} \overline{\Delta}_{2'}$	$\Delta_{1'}\Delta_5$	$\Delta_2 \Delta_5$
(111)	Λ_1	Λ_2	Λ ₃	$\Lambda_1 \Lambda_3$	$\Lambda_1 \Lambda_3$	Λ_2	Λ_1	Λ_3	$\Lambda_2 \Lambda_3$	$\Lambda_2 \Lambda_3$
(110)	Σ_1	Σ_4	$\Sigma_1 \Sigma_4$	$\Sigma_1 \Sigma_3 \Sigma_4$	$\Sigma_1 \Sigma_2 \Sigma_3$	Σ_2	Σ_3	$\Sigma_2\Sigma_3$	$\Sigma_2 \Sigma_3 \Sigma_4$	$\Sigma_1 \Sigma_2 \Sigma_4$
Compatibility Relations Between X and Δ, Z, S										
	X_1	X_2	X_3	X_4	X_5	$X_{1'}$	$X_{2'}$	$X_{3'}$	$X_{4'}$	$X_{5'}$
	Δ_1	Δ_2	$\Delta_{2'}$	$\Delta_{1'}$	Δ_5	$\Delta_{1'}$	$\Delta_{2'}$	Δ_2	Δ_1	Δ_5
	Z_1	Z_1	Z_4	Z_4	Z_3Z_2	Z_2	Z_2	Z_3	Z_3	Z_1Z_4
	S_1	S_4	S_1	S_4	S_2S_3	S_2	S_3	S_2	S_3	S_1S_4
Compatibility Relations Between M and Σ, Z, T										
	M_1	M_2	M_3	M_4	$M_{1'}$	M2'	$M_{3'}$	$M_{4'}$	M_5	$M_{5'}$
	Σ_1	Σ_4	Σ_1	Σ_4	Σ_2	Σ_3	Σ_2	Σ_3	$\Sigma_2 \Sigma_3$	$\Sigma_1 \Sigma_4$
	Z_1	Z_1	Z_3	Z_3	Z_2	Z_2	Z_4	Z_4	Z_2Z_4	Z_1Z_3
	T_1	T_2	$T_{2'}$	T1'	T1'	T2'	T_2	T_1	T_5	T_5

Group Applications to Band Theory

Andrew Galatas

ntroduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

 k · p Perturbation Theory
 Selection Rules in Action

An Example with a Simple Lattice

Group Applications to Band Theory

Andrew Galatas

ntroduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

k · p Perturbation Theory Selection Rules in Action

Summary

Introduction to Crystals

Bravais Lattices Brillouin Zones

Groups and Basic Band Theory Space Group Representations Simple Cubic Example

Perturbation on Bands

k · **p** Perturbation Theory Selection Rules in Action

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

k · **p** Perturbation Theory Selection Rules in Action

Summary

Perturbation Theory

$$\left[\frac{p^2}{2m}+V(\mathbf{r})+\frac{\hbar\mathbf{k}\cdot\mathbf{p}}{m}+\frac{\hbar^2k^2}{2m}\right]u_{n,\mathbf{k}}(\mathbf{r})=E_n(\mathbf{k})u_{n,\mathbf{k}}(\mathbf{r})$$

- Energy is assumed known at some k₀, and the wave vector has some symmetry Γ_i
- ► Then Schrödinger becomes $H_{\mathbf{k}_0} u_{n,\mathbf{k}_0}^{(\Gamma_i)}(\mathbf{r}) = \epsilon_n(\mathbf{k}_0) u_{n,\mathbf{k}_0}^{(\Gamma_i)}(\mathbf{r})$
- ► For a small perturbation,

$$\left(H_{\mathbf{k}_{\mathbf{0}}}+\frac{\hbar\kappa\cdot\mathbf{p}}{m}\right)u_{n,\mathbf{k}_{\mathbf{0}}+\kappa}^{(1\,i)}(\mathbf{r})=\epsilon_{n}(\mathbf{k}_{\mathbf{0}}+\kappa)u_{n,\mathbf{k}_{\mathbf{0}}+\kappa}^{(1\,i)}(\mathbf{r})$$

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

k · **p** Perturbation Theory Selection Rules in Action

Summary

< > >

Selection Rules

- Suppose we want to calculate the matrix element $\left< \Phi^{(i)} | \mathcal{H}' | \Phi^{(j)} \right>$
- Under space group operations which respect the Hamiltonian, this matrix element must either be constant or trivially zero, depending on whether the wavefunctions provided transform like equivalent representations
- More concretely, if the matrix element transforms as Γ_i ⊗ Γ_n ⊗ Γ_j, then either (Γ_n ⊗ Γ_j) is orthogonal to Γ_i, or the direct product is a constant.

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

k · **p** Perturbation Theory Selection Rules in Action

Introduction to Crystals

Bravais Lattices Brillouin Zones

Groups and Basic Band Theory Space Group Representations Simple Cubic Example

Perturbation on Bands

k · **p** Perturbation Theory Selection Rules in Action

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

k · p Perturbation Theory Selection Rules in Action

Summary

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

- We can see these selection rules in action by returning to our band perturbation theory
- Let us look at the Γ₁⁺ band from the **0** vector in a simple cubic lattice

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

k · p Perturbation Theory Selection Rules in Action

Summary

- We can see these selection rules in action by returning to our band perturbation theory
- Let us look at the Γ₁⁺ band from the **0** vector in a simple cubic lattice

$$\epsilon_n^{(\Gamma_1)}(\kappa) = E_n(\mathbf{0}) + \left\langle u_{n,\mathbf{0}}^{\Gamma_1} | H' | u_{n,\mathbf{0}}^{\Gamma_1} \right\rangle$$
$$+ \sum_{n' \neq n} \frac{\left\langle u_{n,\mathbf{0}}^{\Gamma_1} | H' | u_{n',\mathbf{0}}^{\Gamma_j} \right\rangle \left\langle u_{n',\mathbf{0}}^{\Gamma_i} | H' | u_{n,\mathbf{0}}^{\Gamma_1} \right\rangle}{E_n^{\Gamma_1}(\mathbf{0}) - E_{n'}^{\Gamma_i}(\mathbf{0})}$$

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

k · p Perturbation Theory Selection Rules in Action

• $H' = \frac{\hbar \kappa \cdot \mathbf{p}}{m}$ is a vector, and so transforms like the Γ_{15}^- representation of O_h

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

k · p Perturbation Theory Selection Rules in Action

Summary

- $H' = \frac{\hbar \kappa \cdot \mathbf{p}}{m}$ is a vector, and so transforms like the Γ_{15}^- representation of O_h
- \blacktriangleright This means that the linear term vanishes, as $\Gamma^-_{15}\otimes\Gamma^+_1=\Gamma^-_{15}\neq\Gamma^+_1$

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

k · p Perturbation Theory Selection Rules in Action

Summary

A D F 4 目 F 4 E F 4 E F 9 Q Q

- $H' = \frac{\hbar \kappa \cdot \mathbf{p}}{m}$ is a vector, and so transforms like the Γ_{15}^- representation of O_h
- This means that the linear term vanishes, as $\Gamma^-_{15}\otimes\Gamma^+_1=\Gamma^-_{15}\neq\Gamma^+_1$

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

k · p Perturbation Theory Selection Rules in Action

Summary

A D F 4 目 F 4 E F 4 E F 9 Q Q

After some simplification with appropriate basis functions, we get

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

 $\begin{array}{l} k \, \cdot \, p \, \, \mbox{Perturbation} \\ Theory \\ Selection \, Rules \, \mbox{in} \\ Action \end{array}$

Summary

◆○20~ 単則 → 用 → → 用 → → 目 →

 After some simplification with appropriate basis functions, we get

$$E_{n}^{\Gamma_{1}^{+}}(\kappa) = E_{n}^{\Gamma_{1}^{+}}(\mathbf{0}) + \frac{\hbar^{2}\kappa^{2}}{2m} + \frac{\hbar^{2}\kappa^{2}}{m^{2}} \sum_{n \neq n'} \frac{\langle S|\mathbf{p}|P \rangle^{2}}{E_{n}^{\Gamma_{1}^{+}}(\mathbf{0}) - E_{n'}^{\Gamma_{15}^{-}}(\mathbf{0})}$$

<□> <0>

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

k · p Perturbation Theory Selection Rules in Action

Summary

- A working knowledge of the group theory of point and space groups is incredibly useful in the field of theoretical solid state physics
- One particular application is in the analysis of bands around points of high symmetry in the reciprocal lattice
- We looked at how these tools can be used to predict band energies close to symmetric points in a particular perturbation model

Group Applications to Band Theory

Andrew Galatas

Introduction to Crystals Bravais Lattices Brillouin Zones

Groups and Basic Band Theory

Space Group Representations Simple Cubic Example

Perturbation on Bands

k · p Perturbation Theory Selection Rules in Action

Bibliography I

D. Bishop Group Theory and Chemistry

M. S. Dresselhaus.

Applications of Group Theory to the Physics of Solids.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ ●○○

V. Heine

Group Theory in Quantum Mechanics

M. P. Marder

Condensed Matter Physics

Andrew Galatas