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Space Groups

I Crystals are characterized by space groups

I Symmetry under translations and point group
operations

I 73 total symmorphic (simple) space groups
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Bravais Lattices

I Only 14 Bravais lattices

http://www.seas.upenn.edu/
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Reciprocal Lattice Vectors

I Solutions to e iK·r = 1

I Typically form their own Bravais lattice

I Is essentially the Fourier space equivalent of the real
space crystal

I Will be related to periodicity of electron plane waves
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Brillouin Zones

I Smallest repeating unit in reciprocal space

I Collection of reciprocal vectors that are closest to the 0
vector

I Behavior of electrons in periodic potential characterized
by their properties in the first B-Z

I Second, third, etc. Brillouin zones also exist (this
periodicity gives rise to bands)
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Brillouin Zones

Wikipedia, ”Brillouin Zone”
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Bloch’s Theorem

I Ψk(r) = e ik·ruk(r)

I Crucially, uk(r) has (at least some of) the same space
group symmetries of the overall reciprocal lattice

I This leads to Ψk(r + T) = Ψk(r)e ik·T

I For nearly free electrons (NFE), uk(r) ≈ 1√
Ωr

I IMPORTANTLY, Ek+K = Ek
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Space Groups on Reciprocal Vectors

I Ti ·Kj = 2πNij

I OTi ·K′j = 2πNij ⇒ K′j = O−1Kj

I The group of all space group transformations which
send k to k + K is the space group of the wave
vector

I For a general Bloch wavefunction, EOk 6= Ek, BUT if k
is a point of symmetry, all equivalent vectors are
degenerate
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Representations of Point Groups

I Classes of a point group are equivalent transformations,
such as 4-fold rotations or inversions

I Irreducible representations are primarily derived from
the Great Orthogonality Theorem

I Irreps of one point group might be decomposable in
another related point group

I For a given irrep and Bloch eigenfunction,

ORk
Ψ

(i)
kλ(r) =

∑
µ

Ψ
(i)
kµ(r)D(i)(Rk)µλ
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Character Table for Oh

Dresselhaus
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Compatibility Relations

I Band degeneracies are lifted in moving from a wave
vector of high symmetry to one with lower

I The manner in which bands are split is characterized by
compatibility relations, illustrating irreducible
components of now-reducible representations
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An Example with a Simple Lattice
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Perturbation Theory

[ p2

2m
+ V (r) +

~k · p
m

+
~2k2

2m

]
un,k(r) = En(k)un,k(r)

I Energy is assumed known at some k0, and the wave
vector has some symmetry Γi

I Then Schrödinger becomes Hk0u
(Γi )
n,k0

(r) = εn(k0)u
(Γi )
n,k0

(r)

I For a small perturbation,(
Hk0 + ~κ·p

m

)
u

(Γi )
n,k0+κ(r) = εn(k0 + κ)u

(Γi )
n,k0+κ(r)
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Selection Rules

I Suppose we want to calculate the matrix element〈
Φ(i)|H ′|Φ(j)

〉
I Under space group operations which respect the

Hamiltonian, this matrix element must either be
constant or trivially zero, depending on whether the
wavefunctions provided transform like equivalent
representations

I More concretely, if the matrix element transforms as
Γi ⊗ Γn ⊗ Γj , then either (Γn ⊗ Γj) is orthogonal to Γi ,
or the direct product is a constant.
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Selection Rules in Action

I We can see these selection rules in action by returning
to our band perturbation theory

I Let us look at the Γ+
1 band from the 0 vector in a

simple cubic lattice

ε
(Γ1)
n (κ) = En(0) +

〈
uΓ1
n,0|H

′|uΓ1
n,0

〉

+
∑
n′ 6=n

〈
uΓ1
n,0|H

′|uΓi
n′,0

〉〈
uΓi
n′,0|H

′|uΓ1
n,0

〉
EΓ1
n (0)− EΓi

n′ (0)
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Selection Rules in Action

I H ′ = ~κ·p
m is a vector, and so transforms like the Γ−15

representation of Oh

I This means that the linear term vanishes, as
Γ−15 ⊗ Γ+

1 = Γ−15 6= Γ+
1

I Looking at the second order terms, we realize the

expression simplifies to

〈
u

Γ+
1

n,0 |H
′|u

Γ−
15

n′,0

〉〈
u

Γ−
15

n′,0|H
′|u

Γ+
1

n,0

〉
E

Γ+
1

n (0)−E
Γ−

15
n′ (0)
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Selection Rules in Action

I After some simplification with appropriate basis
functions, we get

E
Γ+

1
n (κ) = E

Γ+
1

n (0) +
~2κ2

2m

+
~2κ2

m2

∑
n 6=n′

〈
S |p|P

〉2

E
Γ+

1
n (0)− E

Γ−15
n′ (0
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Summary

I A working knowledge of the group theory of point and
space groups is incredibly useful in the field of
theoretical solid state physics

I One particular application is in the analysis of bands
around points of high symmetry in the reciprocal lattice

I We looked at how these tools can be used to predict
band energies close to symmetric points in a particular
perturbation model
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