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Bravais Lattices

» Crystals are characterized by space groups

» Symmetry under translations and point group
operations

» 73 total symmorphic (simple) space groups




Bravais Lattices

» Only 14 Bravais lattices
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Brillouin Zones

Solutions to eK" =1

v

v

Typically form their own Bravais lattice

v

Is essentially the Fourier space equivalent of the real
space crystal

v

Will be related to periodicity of electron plane waves
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Brillouin Zones

» Smallest repeating unit in reciprocal space

> Collection of reciprocal vectors that are closest to the 0
vector

» Behavior of electrons in periodic potential characterized
by their properties in the first B-Z

» Second, third, etc. Brillouin zones also exist (this
periodicity gives rise to bands)
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Brillouin Zones

> Wi (r) = e*ru(r)

» Crucially, uk(r) has (at least some of) the same space
group symmetries of the overall reciprocal lattice

> This leads to Wy (r + T) = Wy (r)e’*T

» For nearly free electrons (NFE), uk(r) =~ \/IQT

» IMPORTANTLY, Exik = Ex
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Space Groups on Reciprocal Vectors

> Ti . Kj = 27TN,'j

» OT; - Kjf =2 Nj; = Kjf = O~ IK;

> The group of all space group transformations which
send k to k + K is the space group of the wave
vector

» For a general Bloch wavefunction, Epyx # E¢, BUT if k
is a point of symmetry, all equivalent vectors are
degenerate
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» Classes of a point group are equivalent transformations,
such as 4-fold rotations or inversions

» lIrreducible representations are primarily derived from Representatons
the Great Orthogonality Theorem

> Irreps of one point group might be decomposable in
another related point group

» For a given irrep and Bloch eigenfunction,
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Character Table for Oy,
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Compatibility Relations

» Band degeneracies are lifted in moving from a wave
vector of high symmetry to one with lower
» The manner in which bands are split is characterized by

compatibility relations, illustrating irreducible
components of now-reducible representations
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An Example with a Simple Lattice
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Perturbation Theory

2 2,2
p hk-p hok B
o + V(r)+ p= + om unk(r) = En(k)unk(r)

» Energy is assumed known at some kg, and the wave
vector has some symmetry [;

» Then Schrodinger becomes Hiy, ugrli())(r) = en(ko)ugé())(r)

» For a small perturbation,
Hi hep (M) — ¢ (k )
ko + m un,kg-{-n(r) - 6"( 0+ ’i)un7k0+n(r)
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» Suppose we want to calculate the matrix element
<¢(i)|H/‘¢(j)>

» Under space group operations which respect the
Hamiltonian, this matrix element must either be
constant or trivially zero, depending on whether the K - p Perturbation

wavefunctions provided transform like equivalent
representations

Theory

» More concretely, if the matrix element transforms as
I ®@l,®T;j, then either (I, ® I;) is orthogonal to I,
or the direct product is a constant.
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Selection Rules in Action

» We can see these selection rules in action by returning
to our band perturbation theory

» Let us look at the I‘f band from the 0 vector in a
simple cubic lattice
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» We can see these selection rules in action by returning
to our band perturbation theory

» Let us look at the I‘f band from the 0 vector in a
simple cubic lattice

6£1r1)(""7) — En(O) + <u,|;710‘ H/’u£710> Selection Rules in

Action
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> H' =P is 3 vector, and so transforms like the I';
representation of Oy
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Selection Rules in Action

> H' =P is 3 vector, and so transforms like the I';
representation of Oy

» This means that the linear term vanishes, as
- + = +
Ms@Ty =T5 #T7
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» H = h”—ﬂ;" is a vector, and so transforms like the '}
representation of Oy
» This means that the linear term vanishes, as
— + _ = +
M@l =T #0
» Looking at the second order terms, we realize the Selecton Rules in
rf r r r
(utr1als Yol iy )

- !
Enl (0)—E 15(0)

expression simplifies to




Selection Rules in Action

» After some simplification with appropriate basis
functions, we get
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» After some simplification with appropriate basis
functions, we get

r r+ h? K2
E,! = E,!
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» A working knowledge of the group theory of point and
space groups is incredibly useful in the field of
theoretical solid state physics

» One particular application is in the analysis of bands
around points of high symmetry in the reciprocal lattice

» We looked at how these tools can be used to predict
band energies close to symmetric points in a particular
perturbation model

Summary
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