
Spectrochimica Acta Part A 57 (2001) 1919–1930

Molecular symmetry with quaternions
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Abstract

A new and relatively simple version of the quaternion calculus is offered which is especially suitable for applications
in molecular symmetry and structure. After introducing the real quaternion algebra and its classical matrix
representation in the group SO(4) the relations with vectors in 3-space and the connection with the rotation group
SO(3) through automorphism properties of the algebra are discussed. The correlation of the unit quaternions with
both the Cayley–Klein and the Euler parameters through the group SU(2) is presented. Besides rotations the
extension of quaternions to other important symmetry operations, reflections and the spatial inversion, is given.
Finally, the power of the quaternion calculus for molecular symmetry problems is revealed by treating some examples
applied to icosahedral symmetry. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In certain applications of symmetry and group
theory to molecular and solid state problems in
spectroscopy and magnetism it is advantageous to
use tools from vector spaces and fields beyond
conventional algebra over the real and complex
numbers, R and C. This is especially true for
compounds and clusters important in materials
science as, for example, metallic and spin glasses
showing icosahedral symmetry and beyond, qua-
sicrystals, buckminster fullerenes and their deriva-
tives, respectively. In this context an algebra, i.e. a

vector space over R4, whose elements are the
so-called real quaternions, plays an important role
in diverse areas such as mechanics and kinematics
on one side, and group representations in quan-
tum mechanics and chemistry related to spin
transformations in orthogonal and unitary sym-
metry groups on the other side.

The structure of the paper is as follows: in
Section 2 we present some tools from the quater-
nion algebra and one of its matrix realisations.
Sections 3 and 4 deal with the role of quaternions
in 4-space for vectors and geometrical symmetry
in our 3-space. Section 5 is devoted to group
theoretical aspects with special emphasis on the
automorphism properties and their consequences
for the quaternion calculus. Here, another matrix
realisation is presented. Furthermore, we intro-
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duce the symmetry operations of reflections and
the spatial inversion that are scarcely treated in
the literature in this context. Finally, in Section 6
applications of these matters to certain symmetry
properties of the regular icosahedron are pre-
sented that show the elegance and relative simplic-
ity of the quaternion tools for the geometrical
molecular symmetry.

2. Quaternions

We deal here with the algebra of rank 4 of
quaternions H which can be closely related in
applications to the symmetry operations of rota-
tions in conventional 3-space. However, it is less
known that H can also be related to reflections
(involutions) and the spatial inversion in this
space in an elegant manner. (For a detailed treat-
ment and the historical side of quaternions see [1]
and [2].) We endow — according to brilliant
work by Euler, Gauss, Hamilton, and others —
H with the canonical basis,

e�� = (e0,e1,e2,e3), (2.1)

having the (Hamilton) multiplication rules in tab-
ular form,

e0 e1 e2 e3

e1 −e0 e3 −e2

e2 −e3 −e0 e1

e3 e2 −e1 −e0

(2.2)

to be read e1 e3= −e2, etc.
From Eq. (2.2) we learn that the algebra is

associative but not commutative. Furthermore,
we note that the basis element e0 acts like the
number 1 (therefore, some authors use the num-
ber symbol or leave it out completely in calcula-
tions). A general element of H, a say, is the
quaternion, which often is also called a hypercom-
plex number,

a=e0a0+e1a1+e2a2+e3a3= �
3

k=0

ekak,

with a0,a1,a2,a3�R. (2.3)

With Eqs. (2.2) and (2.3) we can now calculate
the quaternion product of a and b, say,

ab= (e0a0+e1a1+e2a2+e3a3)

(e0b0+e1b1+e2b2+e3b3)= �
3

k=0

�
3

t=0

eketakbt

=e0(a0b0−a1b1−a2b2−a3b3)

+e1(a1b0+a0b1+a2b3−a3b2)

+e2(a0b2+a2b0−a1b3+a3b1)

+e3(a0b3+a3b0+a1b2−a2b1), (2.4)

where the (expected) result is again a quaternion,
c say. For all what follows it is crucial to realise
that Eq. (2.4) can be written in matrix form, i.e.

ab= (e0,e1,e2,e3)

�
�
�
�
�

a0 −a1 −a2 −a3

a1 a0 −a3 a2

a2 a3 a0 −a1

a3 −a2 a1 a0

�
�
�
�
�

�
�
�
�
�

b0

b1

b2

b3

�
�
�
�
�

= (e0,e1,e2,e3)

�
�
�
�
�

c0

c1

c2

c3

�
�
�
�
�

, (2.5)

or in compact notation,

ab=e�� A� b� =e�� c� , (2.6)

where the (4,4) representation matrix A� belongs to
SO(4), the special orthogonal group in four
dimensions.

It is interesting to observe that quaternions
appear as special types of matrices depending
upon their position in Eqs. (2.5) and (2.6). Thus,
we find that ba=e�� Ba=e�� d, and in general, ab�
ba.

Furthermore, we learn that each quaternion ma-
trix is determined by the first column (or row)
alone which simplifies the construction of the
corresponding (4,4)-matrix algebra considerably.

Looking again at Eq. (2.4) which reads in
rewritten form,

ab=e0(a0b0)+e0(−a1b1−a2b2−a3b3)

+ (e1a1+e2a2+e3a3)b0

+ (e1b1+e2b2+e3b3)a0+e1(a2b3−a3b2)
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−e2(a1b3−a3b1)+e3(a1b2−a2b1)
=e0(a0b0)+e0[− (a�,b�)]+a�b0+b�a0+a�×b�.

(2.7)

This suggests the ‘splitting’ of a general element
a�H into two parts, e0a0=as and e1 a1+ e2 a2+
e3 a3=a� say, which have the quality of a scalar

part (subscript s) and a �ector part (subscript �).
For a=as+a� and b=bs+b�, their quaternion
product then reads,

ab= (as+a�)(bs+b�):

=asbs+a�bs+b�as+a�b�. (2.8)

The comparison of Eq. (2.8) with Eq. (2.7)
yields two important correspondences in the a�b�

term,

a�b�=e0[− (a�,b�)]+a�×b�, with

(a�,b�)=a1b1+a2b2+a3b3, and

a�×b�=e1(a2b3−a3b2)−e2(a1b3−a3b1)

+e3(a1b2−a2b1), (2.9)

where, respectively, a�, b� and a�×b� point at the
well known scalar product and �ector product of
the vector parts of a and b.

Due to the frequent appearance of a� and b� in
applications one denotes them as either pure or
(purely) imaginary quaternions, where, e.g.

a�= (e1,e2,e3)(a1,a2,a3)T. (2.10)

Here we use the matrix transposition symbol T
with a row vector to indicate a column vector.

Now we introduce to each quaternion a=as+
a�, its conjugate one, a*=as−a�, i.e.

a*= (e0,e1,e2,e3)(a0,−a1,−a2,−a3)T. (2.11)

The quaternion product aa*, applying either
Eq. (2.4) or Eq. (2.5), gives a real non-negative
number,

aa*= (e0,e1,e2,e3)(a0
2+a1

2+a2
2+a3

2,0,0,0)T

= �
3

k=0

ak
2= �a �2�a*a, (2.12)

called the norm of a. The (positive) number �a �=
(aa*)1/2, the modulus of a�0, is the length of the
quaternion. If �a �=1, a is normalised to unity and
called a normed or unit quaternion.

Finally, we define the in�erse quaternion a−1 of
a,

a−1= (1/�a �2)a*, with aa−1=a−1a=e0,
(2.13)

where e0=1 denotes the identity quaternion�H.
In the next step we can extend without prob-

lems Eqs. (2.4), (2.5) and (2.6) to the quaternion
products of three and more partners; for example,

abc= (e0,e1,e2,e3)

�
�
�
�
�

a0 −a1 −a2 −a3

a1 a0 −a3 a2

a2 a3 a0 −a1

a3 −a2 a1 a0

�
�
�
�
�

�
�
�
�
�

b0 −b1 −b2 −b3

b1 b0 −b3 b2

b2 b3 b0 −b1

b3 −b2 b1 b0

�
�
�
�
�

�
�
�
�
�

c0

c1

c2

c3

�
�
�
�
�

= (e0,e1,e2,e3)

�
�
�
�
�

d0

d1

d2

d3

�
�
�
�
�

,

or

abc=e�� A� B� c� =e�� d� � (ab)c=a(bc), (2.14)

which also confirms the associative properties of
H.

Technically speaking, all these properties to-
gether qualify H as a division algebra or a skew-
field over the reals since all group axioms for the
mathematical structure ‘field’ are fulfilled, with
the exception of the commutative axiom of
quaternion multiplication.

3. Quaternions and vectors

On our approach to use quaternions for sym-
metry problems we establish a 1-1 correspondence
of the following kind: Given a polar �ector in the
space V3(R),

r̄=e�� xx+e�� yy+e�� zz, with x,y,z�R, (3.1)
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where e� x,e� y,e� z indicate three unit vectors along the
Cartesian axes, we define a bijection �,

� :e� x�e1e� y�e2,e� z�e3, (3.2)

onto the quaternion units. Thereby we map the
vector r� onto the pure quaternion r�,

� :r� =e� xx+e� yy+e� zz�r�=e1x+e2y+e3z, (3.3)

and call r� a quaternion vector or q-�ector. For
the product of two (or more) such q-vectors, Eq.
(2.9) reveals even more mutual relations on which
we will put important properties using the well-
known scalar and vector product relations, but
now formulated in quaternion language! Encour-
aged by the correspondences (3.2) and (3.3), we
go one step further and correlate other vector
properties in 3-space, as for example their lengths,
directions and, respectively, direction cosines,
with properties of q-vectors.

To give the reader some flavour of these aspects
we start with Eqs. (2.3) and (2.11) for a unit
quaternion a, i.e.

aa*=1=
a0

2

�a �2+
a1

2+a2
2+a3

2

�a �2 :=cos2�+sin2�.

(3.4)

Therefore, since �a �=1, a can be written,

a�
a

�a �=e0

a0

�a �+
1

�a �(e1a1+e2a2+e3a3)

=e0cos�+ (e1cos�x+e2cos�y+e3cos�z)sin�,

or

a :=e0cos�+qasin�. (3.5)

The introduction of trigonometric functions
and the pure unit quaternion qa in terms of the
directional angles �x, �y, �z with respect to a
right-handed Cartesian coordinate system may
seem artificial at this stage. However, it will turn
out soon that Eq. (3.5) is of foremost importance
for symmetry applications. At present we recog-
nise that the directional pure quaternion qa, with
qa qa*=qa* qa=1, defines an axis in the three-di-
mensional subspace of H in 1-1 correspondence
with the ordinary vectors in 3-space.

If we work out the special quaternion product
ar�a−1; then we obtain with Eqs. (2.8) and (2.9),

ar�a
−1= (e0cos�+qasin�)(e1x+e2y+e3z)

(e0cos�−qasin�), (3.6)

and it turns out that the q-vector r� is transformed
into the q-vector, rv� =e1 x �+e2 y �+e3 z � say, in
the passive viewpoint. With Eqs. (2.3) and (3.5)
we find for the new vector components in terms of
the original ones,

�
�
�
�
�

x �

y �

z �

�
�
�
�
�

�
�
�
�
�

a0
2+a1

2−a2
2−a3

2 −2a0a3+2a1a2 2a0a2+2a1a3

2a0a3+2a1a2 a0
2−a1

2+a2
2−a3

2 −2a0a1+2a2a3

−2a0a2+2a1a3 2a0a1+2a2a3 a0
2−a1

2−a2
2+a3

2

�
�
�
�
�

�
�
�
�
�

x

y

z

�
�
�
�
�

=R� (a)

�
�
�
�
�

x

y

z

�
�
�
�
�

, (3.7)

The matrix R(a) is orthogonal with detR(a)=1
since all real(!) matrix elements are continuous
functions of the quaternion components of Eq.
(2.3). Therefore, Eq. (3.7) describes a rotation
operation.

A final word in this context: doing calculations
with Eqs. (3.6) and (3.7) it might well be that
some readers feel unhappy using quaternions in
this form. Therefore, we will, respectively, must
look for the possibility of simplifications in cer-
tain cases of practical interest as exploited in the
next section.

4. Quaternions and geometrical symmetry

For quaternion products, like ab, ar�a−1 and
others, the bijective or 1-1 correspondence with
ordinary vectors immediately suggests that, e.g.
the rotation quaternion a and the vector b� gener-
ate a plane. If a is given by Eq. (3.5) we can
represent the polar �ector b�, for example, by

b�=qab+qa� b �, (4.1)
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where qa and qa� are defined as orthogonal unit
q-vectors spanning the plane of a� and b�. In order
not to be limited to a plane in 2-space for the
sequel of observations, we extend these two basis
vectors with a third unit q-vector qa� such that
they form an orthogonal triad in 3-space. Fur-
thermore, we define their (right-handed) multipli-
cation table similar to that in Eq. (2.2), i.e.

e0 qa qa� qa
��

qa −e0 qa
�� qa�

qa� −qa
�� −e0 qa

qa
�� qa� −qa −e0

,

to be read qaqa
�� = −qa� , etc. (4.2)

This situation is depicted in Fig. 1.
With these definitions and with Eqs. (3.5), (4.1)

and (4.2), we work out Eq. (3.6) and obtain,

ab�a
−1= (e0cos�a+qasin�a)(qab+qa� b �)

(e0cos�a−qasin�a)

=qab+qa� b �cos2�a+qa
��b �sin2�a :=d�.

(4.3)

The result is remarkable in various ways:
Firstly, d� and b� have the same component in the
direction of a. Secondly, the new vector d� is — in
general — out of the plane of a� and b�, and
thirdly, the norms and moduli are identical under
this transformation, i.e. �d� �= �b� �, such that we
have applied an orthogonal transformation in the
form of a rotation of bv around the axis of a.

Finally, notice in Eq. (4.3) the appearance of
twice the angle �a. In this context we point out
that this fact is often considered in the literature
by redefining Eq. (3.5) as

a :=e0cos(�a/2)+qasin(�a/2). (4.4)

For example, for a=e0 cos(�a/2)+e2 sin(�a/
2). and the vector rv=e1 x+e2 y+e3 z we have,

ar�a
−1= [e0cos(�a/2)+e2sin(�a/2)]

(e1x+e2y+e3z)[e0cos(�a/2)-e2sin(�a/2)]

=e1(xcos�a+zsin�a)+e2y

+e3(−xsin�a+zcos�a)=r �� (4.5)

Basically, however, this angular behaviour is a
consequence of the automorphism group of the
quaternion algebra; see below for details.

5. Some group theory with quaternions

5.1. Moti�ation

In his remarkable book, Symmetry [3], Her-
mann Weyl, one of the giants of symmetry and
group theory in mathematics and physics, writes
on pages 144 and 145,...... ‘Whenever you have to
do with a structure-endowed entity �, try to de-
termine its group of automorphisms, the group of
those element-wise transformations which leave
all structural relations undisturbed’........
and....‘Symmetry is a vast subject, significant in
art and nature’........

Clearly, we would add today to the last sen-
tence..‘significant in....physics and chemistry, too’.

Suppose we have an automorphism of the
quaternion algebra A (H) in form of a basis
transformation � basis e� basis d, such that

Fig. 1. The vector b� represented by the orthogonal triad of
pure unit quaternions qa, qa� , qa�. b� is defined to be in the plane
of qa and qa� , whereas qa� is orthogonally oriented in the
three-dimensional subspace of the quaternion 4-space H.
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(d0,d1,d2,d3)= (e0,e1,e2,e3)

�
�
�
�
�

t00 t01 t02 t03

t10 t11 t12 t13

t20 t21 t22 t23

t30 t31 t32 t33

�
�
�
�
�

(5.1)

What can be said about the structure and prop-
erties of the (4,4)-transformation matrix, T say,
according to the multiplication rules given in Eq.
(2.2)? Firstly, due to the period-preserving prop-
erty of each automorphism we have, t1 0= t2 0=
t3 0=0 and t0 0=1.

Next we investigate the equation d1 d1= −1,
i.e. with Eq. (5.1) we find

d1d1= −1= t01
2 − (t11

2 + t21
2 + t31

2 )

+2t01(e1t11+e2t21+e3t31). (5.2)

Since the term in the bracket of the last term in
Eq. (5.2) is different from zero, we must have,

t01=0, and t11
2 + t21

2 + t31
2 =1. (5.3)

In analogy we obtain,

t02= t03=0, together with t12
2 + t22

2 + t32
2

=1, and t13
2 + t23

2 + t33
2 =1. (5.4)

Looking at the equation d1 d2=d3, i.e.

d1d2=e1(t21t32− t22t31)+e2(t31t12− t11t32)

+e3(t22t11− t21t12)=d3

=e1t13+e2t23+e3t33, (5.5)

we find for the (3,3)-submatrix, M say, indicated
by the broken lines in Eq. (5.1), that its determi-
nantal value based upon Eq. (5.4) equals 1.

Finally, we work out the anti-commutator
[d1, d2]+ =0, i.e.

[d1, d2]+:=d1d2+d2d1=0

= −2(t11t12+ t21t22+ t31t32). (5.6)

In addition, we have from the two analogous
equations the information,

t11t13+ t21t23+ t31t33=0, and

t12t13+ t22t23+ t32t33=0. (5.7)

Discussion. Concerning the properties of the
matrices T and especially M we learn from Eq.

(5.3) through Eq. (5.7) that the rows and columns
of M are, respectively, normalised to one and
orthogonal to each other. Furthermore, det M=1
such that M is an orthogonal matrix representing
a rotation in ordinary 3-space. Thus we have
proved, tracing Hamilton’s work of around 1850,
that the automorphism group A (H) of the real
unit quaternions is homomorphic to the rotation
group SO(3), also called the special orthogonal
group in three dimensions.

In reverse, given a (3,3) orthogonal or rotation
matrix, we can always work out the correspond-
ing automorphisms of the quaternion algebra.

To learn more about the connection of real unit
quaternions with rotations in 3-space we look at a
subgroup of A(H), denoted the inner automor-
phism group I (H), where the action of the multi-
plicative quaternion group in 4-space is by
conjugation on vector quaternions in 3-space, as
already worked out in Section 4, e.g. in Eqs. (4.4)
and (4.5).

In this context it is of importance to realise that
we have for Eq. (4.5) the equality,

ar�a−1= (−a)r�(−a−1), (5.8)

which means that the multiplicative group H is
not isomorphic, but 2:1-epimorphic to the group
SO(3). The same relation is valid for the corre-
sponding subgroups of them. Without exaggera-
tion one can consider Eq. (5.8) as the entrance
gate to the 2:1-epimorphism: SU(2)�SO(3),
where SU(2) is the special unitary group in two
dimensions that acts as the co�ering or double
group for SO(3). About the situation for the finite
subgroups (i.e. point groups) of physical and
chemical importance with respect to these com-
pact groups, see elsewhere [6].

Let us now look at a further example of an
inner automorphism using for the unit quaternion
a the ansatz

a=e0cos(�a/2)+e3sin(�a/2)�e0ca+e3sa. (5.9)

In the sense of Eqs. (4.5) and (4.3) we find,

ar�a−1=e1(xcos�a−ysin�a)

+e2(xsin�a+ycos�a)+e3z

�e1x �+e2y �+e3z �. (5.10)

-----------------------

--
--

--
--

--
--

--
-
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The result for the components of the two q-vec-
tors, r� and its transformed one r �� , reads in matrix
form,

�
�
�
�
�

x �

y �

z �

�
�
�
�
�

=

�
�
�
�
�

cos�a −sin�a 0
sin�a cos�a 0

0 0 1

�
�
�
�
�

�
�
�
�
�

x
y
z

�
�
�
�
�

(5.11)

which clearly reveals that the quaternion a in
4-space induces a rotation about the z-axis with
the angle �a in the ordinary 3-space.

At this stage we mention again the important
correlation of the multiplicative group of the
quaternion algebra A (H) with the group SO(4).
In Section 2 we based the quaternion products ab
and abc in Eqs. (2.5) and (2.14) upon the action of
a (4,4)-matrix A on the column vector b. There-
fore, for our example in Eq. (5.10) this means,

ar�a−1=e�

�
�
�
�
�

ca 0 0 −sa

0 ca −sa 0
0 sa ca 0
sa 0 0 ca

�
�
�
�
�

�
�
�
�
�

0 −x −y −z
x 0 −z y
y z 0 −x
z −y x 0

�
�
�
�
�

�
�
�
�
�

ca

0
0

−sa

�
�
�
�
�

=e�

�
�
�
�
�

0
xcos�a−ysin�a

xsin�a+ycos�a

z

�
�
�
�
�

, (5.12)

where e denotes the quaternion matric basis. Note
that the real (4,4)-representation matrix A for a
on the right hand side of Eq. (5.12) is unimodular
and an element �SO(4). The mapping: a�A is an
isomorphism.

In addition another important matrix represen-
tation for unit quaternions in the group SU(2)
should be pointed out, the special unitary group
in two dimensions. Looking at the connection of a
with a complex (2,2)-representation matrix
U(a)�SU(2), one can show that an isomorphism
is operative here too, if one defines a bijective
mapping: a�U(a), such that

U� (a)=
� ka la

− l a* ka*
�

=
�a0− ia3 ia1+a2

ia1−a2 a0+ ia3

�
,

(5.13)

where ka and la are complex numbers often de-
noted as Cayley–Klein parameters. For our exam-
ple in Eq. (5.9) this reads,

U� (a ;z)=�cos(�a/2)− isin(�a/2) 0
0 cos(�a/2)+ isin(�a/2)

�
�
�exp(− i�a/2) 0

0 exp(i�a/2)
�

. (5.14)

On the other hand, we find for the inner auto-
morphisms in analogy to Eqs. (5.9) and (5.10),

a=e0cos(�a/2)+e1sin(�a/2)�e0ca+e1sa, and

a=e0cos(�a/2)+e2sin(�a/2)�e0ca+e2sa,
(5.15)

the corresponding matrix forms,

�
�
�
�
�

x �

y �

z �

�
�
�
�
�

=

�
�
�
�
�

1 0 0
0 cos�a −sin�a

0 sin�a cos�a

�
�
�
�
�

�
�
�
�
�

x
y
z

�
�
�
�
�

, and

�
�
�
�
�

x �

y �

z �

�
�
�
�
�

=

�
�
�
�
�

cos�a 0 sin�a

0 1 0
−sin�a 0 cos�a

�
�
�
�
�

�
�
�
�
�

x
y
z

�
�
�
�
�

,

(5.16)

which point at ordinary 3-space rotations around
the x- and the y-axis, respectively. The corre-
sponding complex representation matrices
U(a)�SU(2) reads,

U� (a ;x)=
�ca isa

isa ca

�
, and

U� (a ;y)=
� ca sa

−sa ca

�
. (5.17)

Discussion. For applications in molecular and
solid state symmetry we recall that since the fun-
damental work of Euler on the kinematics of rigid
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body motion a general rotation in our 3-space can
be formulated, for example, as a product of three
rotations about (at least) two non-coinciding and
space-fixed axes containing the origin [5]. Here we
define this product as follows: first a rotation
about the z-axis through the angle � is performed,
followed by a rotation about the y-axis through
an angle �, and, finally, a rotation, again about
the z-axis through an angle � is applied.

With Eqs. (5.14) and (5.17) we obtain for this
definition

U� (�,�,�)=U� (� ;z)U� (� ;y)U� (� ;z)=�exp(− i(�+�)/2)cos�/2, exp(i(�−�)/2)sin�/2

−exp(− i(�−�)/2)sin�/2, exp(i(�+�)/2)cos�/2

�
.

(5.18)

In this and other equations containing �, � and
� the term Euler angles is often used for them.

Their angular domains are defined as follows:

0°���360°, 0°���180°, 0°���360°.
(5.19)

Because of many different conventions in the
literature [5], the term Euler parameters is pre-
ferred instead. For more information on these
aspects and examples from molecular symmetry
groups the reader is referred to the literature [6].
The correlation of the Euler and Cayley–Klein
parameters with the components of the corre-
sponding quaternion is obvious from Eqs. (5.13)
and (5.18).

5.2. A digression from rotations to other
symmetry operations

Let us go back to Eqs. (4.1) and (4.4) and Fig.
1 for the case of a twofold rotation of the polar
vector b� about qa, i.e.

qab�qa
−1=qa(qab+qa� b �)(−qa)=qab−qa� b �

(5.20)

Note that in this case the rotational quaternion
(4.4) contains no scalar part and its vector part
equals the unit q-vector.

For a twofold rotation of b� about qa� , we find,

qa� b�(qa� )−1=qa� (qab+qa� b �)(−qa� )= −qab+qa� b �.
(5.21)

Furthermore, if we apply qa�, we obtain,

qa
��b�(qa

��)−1=qa
��(qab+qa� b �)(−qa

��)= −qab−qa� b �

= −b�, (5.22)

Eqs. (5.20), (5.21) and (5.22) contain important
results for applications in molecular symmetry,
since we can now go beyond rotations with the
quaternion calculus: Although Eq. (5.22) was ob-
tained by the action of a rotational operator on a
polar vector, the result also points at the action of
the spatial inversion operator on this vector. Is
something wrong here? To find a way out of this
apparent contradiction we proceed as follows: let
the action of the spatial inversion operator i� in
V3(R), i.e. i� b� = −b� , be operative in the quater-
nion space,

q�b�q� := −b�, (5.23)

without knowing the precise form of q� and q� at
this stage. Then, for the action of the following
twofold rotation, C� 2 x say, and its quaternionic
image, qa say, we obtain,

qa(−b�)qa
−1=qa(−b�)(−qa)= −qab+qa� b �.

(5.24)

For C� 2 y and C� 2 z and their images, q�� and q� ��
say, we find,

qa� (−b�)(qa� )−1=qa� b�qa� =qab−qa� b �, (5.25)

and

qa
��(−b�)(qa

��)−1=qa
��b�qa

�� =qab+qa� b �=b�(!).
(5.26)

Next we calculate q� and q�: for example, from
Eqs. (5.23) and (5.24) we get,

qa(q�b�q�)qa
−1=qab�qa �q�b�q�=q�

−1(qab�qa)qa

=e0b�(−e0), (5.27)

which means that q�=e0 and q�= −e0. From
Eq. (5.23) with Eqs. (5.25) and (5.26) we get the
same results for q� and q�. Thus the action of the
spatial in�ersion can be written,

qab�q�=e0b�(−e0)= −b�. (5.28)
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This information can be used to work out the
action of the reflection operators. It is well known
that in our 3-space the (commutative) product of
the inversion through the origin with a twofold
rotation is a reflection in a plane perpendicular to
the rotational axis. To better understand the role
of a reflection in quaternion space we start from
the observation that any(!) pure (unit or not)
quaternion can always be composed as the
product of two (or more, clearly, in general)
vector quaternions. For example, with Eq. (2.9)
we can put,

c=d1d2=d�1d�2=cs+c�. (5.29)

For the pure unit quaternions (see Fig. 1) this
behaviour is laid down in Eq. (4.2): for example,
in the case, qa=qa� qa�, the constituent partners qa�
and qa� define a plane that contains the origin and
is perpendicular to the (resultant) qa. This plane is
defined as the plane of the quaternion qa.

The action of qa on the polar vector b� is then
equivalent to a reflection of b� in the plane
spanned by qa� and qa�, with similar interpretations
for the other two reflections induced by the ac-
tions of qa� and qa�, respectively.

Thus, the results of these quaternionic reflec-
tions are as follows,

qab�qa= −qab+qa� b �, qa� b�qa� =qab−qa� b �,

and qa
��b�qa

�� =qab+qa� b �=b�, (5.30)

where the last case reveals the invariance of b�

under the reflection qa� because this polar vector
has been defined to lie in the plane of qa� [see Eq.
(4.1)].

Furthermore, it is worth observing that the
in�ersion through the origin can also be generated
by three successive reflections with respect to per-
pendicular planes. In quaternion language this
reads with Eq. (4.2),

(qa
��qa� qa)b�(qaqa� qa

��)=e0b�(−e0)= −b�. (5.31)

6. Quaternions and molecular symmetry — an
example

We are now in a position to perform symmetry
calculations on the regular polyhedra including

Fig. 2. A regular icosahedron whose vertices are indexed as
Cartesian coordinates in Table 1.

the Platonic solids using our quaternion calculus of
the previous sections. We select as an example a
regular icosahedron which recently has gained
great importance for various applications in
chemistry and physics. For this model, shown in
Fig. 2, we also provide in Table 1 the Cartesian
coordinates of the 12 numbered vertices. Using
my convention, the midpoints of all 30 edges are

Table 1
For the model shown in Fig. 2 we present the Cartesian
coordinates of the 12 numbered vertices

No. yx z

1 d 0 1
2 −10d

−10−d3
−d4 0 1

1 d05
−d6 0 1

7 −1 −d0
8 −1 d0

0d9 1
−d1 010
−d−1 011

0d−112

The coordinate d equals 2 cos 72°.
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normalised to a unit distance from the origin 0a of
this Platonic solid.

The coordinates d and −d are related to the
golden ratio, �= (1/2)(�5+1), i.e..

d=�−1= (1/2)(�5−1)=2cos72°.

Although the properties of the icosahedral rota-
tion group I of order 60 are well known [7], we will
use this point group to show the power and
simplicity of the quaternion calculus in this context.
Suppose we are interested in the fivefold rotations
about the symmetry axis containing the origin 0�
and vertex 1. The corresponding unit quaternion,
a1 say, is represented by

a1=e0cos(72°/2)+q1sin(72°/2), (6.1)

where q1 denotes a pure unit quaternion that
describes the direction of the rotation axis,

q1=e0cos�1x+e2cos�1y+e3cos�1z, (6.2)

in terms of the direction cosines with the Cartesian
axes. With the coordinates of the vertex or ‘pole’
1 [see Table 1, Eqs. (3.5) and (4.4)] we calculate the
quaternion components a01, a11, a21, a31 and map
them onto the (4,4)-matrix in Eq. (2.5) which is
denoted here by A1 [refer to Eq. (2.6)]. To study the
symmetry action of the quaternion a1 and its matrix
representative A1�SO(4), we use Eqs. (2.14) and
(3.6) to establish an inner automorphism,

(�a1)rk(�a1
−1)=rk� �

2:1
(�A� 1)R� k(�a1*)=R� k� .

(6.3)

Here, * denotes the complex conjugation opera-
tor of Eq. (2.11) to construct the (4,1)-column
matrix a 1* which is equal to the first row of the
matrix A1. The (4,4)-matrix Rk represents the unit
vector quaternion rk corresponding to the position
vector r� k which is directed from the origin 0� to the
vertex or pole no. k (see Fig. 2). As an example we
take the vector r� 4, i.e. applying Eq. (6.3), which
gives as a result the vector r� 8,

Fig. 3. One of the equilateral triangular faces of the regular
icosahedron. The special point C is the centroid of the triangle
and is on a threefold rotation axis, whereas the special points
P, S, and T at the medial intersections of the sides are on
twofold rotation axes. Finally, the vertices 1, 4 and 5 are on
fivefold rotation axes of this solid figure.

where �r� k �= �r� 1�=…= �r� 4�= �r� 5�=…=1.1756
units for all 12 vertices of the solid figure in my
normalisation convention (see above). Looking at
Fig. 2 we interpret Eq. (6.4) as an anti-clockwise
fivefold rotation (as viewed from the positive hemi-
sphere onto the origin of the figure) such that r� 4 is
transformed into r� 8.

At this stage it is both interesting and important
to realise that the period p of the quaternion matrix
A1 in SO(4) equals 10. This is one example for the
appearance of both a finite double group and the
corresponding period-splitting rules worked out by
the author [4]1. Here, they are needed for the
transformation from the 3-space into the quater-
nion 4-space H.

1 I take this occasion to mention an uncorrected misprint in
the published version. On page 479 in the fifth line of the
section on Dihedral symmetry it should read: ‘‘…when n is
even whereas when n is odd there……’’.

A� 1R� 4a� 1*=

�
�
�
�
�

0.809 −0.309 0.000 −0.500
0.309 0.809 −0.500 0.000
0.000 0.500 0.809 −0.309
0.500 0.000 0.309 0.809

�
�
�
�
�

1
�r� k �

�
�
�
�
�

0 d 0 −1
−d 0 −1 0

0 1 0 d
1 0 −d 0

�
�
�
�
�

�
�
�
�
�

0.809
−0.309

0.000
−0.500

�
�
�
�
�

=
1

�r� k �

�
�
�
�
�

0
0

−1
d

�
�
�
�
�

, (6.4)
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A characteristic feature of the regular icosahe-
dron is the occurrence of 20 equilateral triangular
faces. One of these, containing the vertices 1, 4
and 5, is presented in Fig. 3.

This information will now be used in the next
example. We ask which symmetry operation
(SOP) is equivalent to the product of the two
twofold rotations, C2P and C2S say, containing the
points P and S? Since group I is non-Abelian we
have to be careful about the sequence of the two
SOPs. To apply the quaternion calculus we must
know the coordinates of these points. From the
figures and the table we find the following Carte-
sian coordinates using tools of analytical
geometry,

P� (0;0;1),

S� (d/2;1/2;(1+d)/2), and C

� (0;1/3;(2+d)/3). (6.5)

The requested unit quaternions representing the
SOPs follow from Eqs. (3.5) and (4.4),

aP=e0cos(180°/2)

+ (sin(180°/2))

(e1cos90°+e2cos90°+e3cos0°)=qP

=e3, and

aS= (e1cos72°+e2cos60°+e3cos36°)=qS. (6.6)

In addition we point out that the corresponding
periods of AP and AS in SO(4) are both p=4, but
they induce twofold rotations in the real 3-space.

Thus we have for one of the two possibilities
the combined operation,

aPaS=e3qS=e0(−cos36°)+e1(−cos60°)

+e2cos72°�e0(cos�a/2)

+qa(sin�a/2). (6.7)

By comparison of the corresponding terms we
find for the resulting quaternion,

rotational angle: �a/2=144°; directional angles of
the rotation axis:

�x=148.2825°; �y=58.2825°, and �z=90°.
(6.8)

(For the directional angles we use the conven-
tion: 0��x,�y,�z�180°). Since the rotation axis
has no z-component we find with Eq. (6.8) and
Table 1 that it is equal to the position vector r� 1 2,
i.e.

aPaS=a12=e0cos(288°/2)+q12sin(288°/2), (6.9)

which in the 3-space of group I corresponds to the
SOP of a clockwise fivefold rotation about r� 1 2

with the angle �a=4×72° or, alternatively, to an
anti-clockwise rotation about the same axis with
the angle 72°. By a similar treatment we find for
the other possibility,

aSaP=a10=e0cos(288°/2)+q10sin(288°/2),
(6.10)

which leads to an equivalent interpretation with
r� 1 0 as rotation axis.

For the periods of the corresponding rotation
matrices with their rotational angles, A1 2(144°)
and A1 0(144°), we find p=5 for both.

The extension of the quaternion calculus to the
full icosahedral group of order 120, i.e. the direct
product Ih=I×Ci, is straightforward. The con-
sideration of the improper rotations follows the
strategy described in the course of Eqs. (5.20),
(5.21), (5.22), (5.23), (5.24), (5.25), (5.26), (5.27),
(5.28), (5.29), (5.30) and (5.31) of the last section.
For example, one of the 15 reflections of Ih has a
mirror plane generated by the position vectors r� 2
and r� 5. This then is the plane of the reflection
quaternion, q� say, which is constructed via q�=
r2×r5. In normalised form we find, q�=
e1 cos36°+e2 cos108°+e3 cos60°. The action,
q� rk q�=rk� , gives, r1�r12, r2�r2, r3�r10, etc.,
which is typical for a reflection in the plane of q�.

With these tools and the given numerical exam-
ples the interested reader should have no
difficulties in studying the symmetry properties of
the icosahedron (and of other complex polyhedra)
in a consistent manner with the bonus of having
immediate access to the corresponding representa-
tion matrices and irreducible representations of
the solid figure(s) in both the single and the
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double group modes, almost without any extra
effort!

7. Conclusions

The most important issues of this paper are: the
multiplicative group of the non-zero, unit quater-
nions in the 4-space H induces rotations of vectors
in our 3-space, whereas the unit pure quaternions
in a three-dimensional subspace of H induce ei-
ther twofold rotations, or reflections and the spa-
tial inversion in the 3-space. Furthermore, we can
easily find the defining representations of the cor-
responding double groups of SO(3) and its sub-
groups by working out the inner automorphism
group I(H). Furthermore, from experience with
the icosahedral example it turns out that molecu-
lar symmetry properties of the more complex
chemical coordination polyhedra can be found by
using the corresponding quaternion calculus in a
relatively simple manner.

Furthermore, in the icosahedral case it was
shown clearly that the quaternion calculus is
much simpler to apply than the conventional
methods of geometrical molecular symmetry and
group theory. Finally, my primary objective in
this paper was to make difficult symmetry aspects
more transparent.
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