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Kac-Moody algebra
Suppose g is the Lie algebra of some ordinary finite-dimensional
compact connected Lie group, G. We take G̃ to be the set of (suitably
smooth) maps from the circle S1, to G. We could represent S1 as the
unit circle in the complex plane

S1 = {z ∈ C : |z|= 1} (1)

and denote a typical map by

z → γ(z) ∈ G (2)

The group operation is defined on G̃ in the obvious way, given two
such maps γ1, γ2 : S1 → G, the product of γ1 and γ2 is

γ1 · γ2(z) = γ1(z)γ2(z) (3)

This makes G̃ into an infinite-dimensional Lie group. It is called the
loop group of G.
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To find the algebra of the loop algebra, start with a basis T a, 1 ≤ a ≤
dim g, with

[T a,T b] = if ab
c T c (4)

A typical element of G is then of the form γ = exp[−iT aθa]
A typical element of G̃ can then be described by dimg functions θa(z)
defined on the unit circle,

γ(z) = exp[−iT aθa(z)] (5)

We can make a Laurent expansion of θa(z) =
∑∞

n=−∞ θ
−n
a zn, and

introduce generators T a
n = T azn Use the infinitesimal version of

elements near identity, and commutation relation, we see that G̃ has
the Lie algebra

[T a
m,T

b
n ] = if ab

c T c
m+n (6)

which is called the untwisted affine Kac-Moody algebra g̃, the algebra
of the group of maps S1 → G
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Witt algebra
To construct the infinite dimensional group corresponding to the
Virasoro algebra, consider the group Ṽ of smooth one-to-one maps
S1 → S1 with the group multiplication now defined by composition

ξ1 · ξ2(z) = ξ1(ξ2(z)) (7)

To calculate the Lie algebra of Ṽ , consider its faithful representation
defined by its action on functions f : S1 → V where V is some vector
space

Dξf (z) = f (ξ−1(z)) ≈ f (z) + iε(z)z
d
dz

f (z) (8)

Making a Laurant expansion of ε(z) =
∑∞

n=−∞ ε−nzn, then introduce
generators Ln = −zn+1 d

dz , We find the Lie algebra ṽ

[Lm,Ln] = (m − n)Lm+n (9)

which is called Witt algebra
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Central Extensions

In the theory of Lie groups, Lie algebras and their representation
theory, a Lie algebra extension e is an enlargement of a given Lie
algebra g by another Lie algebra h
Let g be a Lie algebra and Rp an abelian Lie algebra. A Lie algebra g0

is called a central extension of g by Rp if
(i) Rp is (isomorphic to) an ideal contained in the center of g0 and
(ii) g is isomorphic to g0/Rp.

The central extension of Kac-Moody and Witt algebras are

[T a
m,T

b
n ] = if ab

c T c
m+n + kmδabδm+n,0 (10)

[Lm,Ln] = (m − n)Lm+n +
c

12
m(m2 − 1)δm+n,0 (11)
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Highest weight representation
If we consider the Virasoro algebra alone, there is only one vacuum
state |h〉 in any given irreducible highest weight representation and it
satisfies

L0 |h〉 = h |h〉 , Ln |h〉 = 0, n > 0 (12)

In order for there to be a unitary representation of the Virasoro algebra
corresponding to givin values of c and h, it is necessary that eithor

c ≥ 1 and h ≥ 0 (13)

or

c = 1− 6
(m + 2)(m + 3)

(14)

and

h =
[(m + 3)p − (m + 2)q]2 − 1

4(m + 2)(m + 3)
(15)

where m = 0,1,2...; p = 1,2, ...,m + 1; q = 1,2, ...,p
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Conformal Symmetry in dimension d > 3
By definition, a conformal transformation of the coordinates is an
invertible mapping x → x ′ which leaves the metric tensor invariant up
to a scale:

g′µν = Λ(x)gµν(x) (16)

The set of conformal transformations manifestly forms a group, and it
obviously has the Poincare group as a subgroup, which corresponds to
the special case Λ(x) = 1
Now let’s investigate the infinitesimal coordinate transformation
xµ → xµ + εµ, conformal symmetry requires that

∂µεν + ∂νεµ = f (x)gµν (17)

where

f (x) =
2
d
∂ρε

ρ (18)

By applying an extra derivative, we get constrains on f (x)

(2− d)∂µ∂ν f = ηµν∂
2f (19)
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The conditions require that the third derivatives of ε must vanish, so
that it is at most quadratic in x. Here we list all the transformations

# Finite Transformations Generators
translation x ′µ = xµ + aµ Pµ = −i∂µ

dilation x ′µ = αxµ D = −ixµ∂µ
rigid rotation x ′µ = Mµ

ν xν Lµν = i(xµ∂ν − xν∂µ)

SCT x ′µ = xµ−bµx2

1−2b·x+b2x2 Kµ = −i(2xµxν∂ν − x2∂µ)

Table: Conformal Symmetry Transformations

Manifestly, the special conformal transformation is a translation,
preceded and followed by an inversion xµ → xµ/x2
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Counting the total number of generators, we find
N = d + 1 + d(d−1)

2 + d = (d+2)(d+1)
2 And if we define the following

generators

Jµν = Lµν J−1,µ =
1
2

(Pµ − Kµ) (20)

J−1,0 = D J0,µ =
1
2

(Pµ + Kµ) (21)

where Jab = −Jba and a,b ∈ {−1,0,1, ...,d}. These new generators
obey the SO(d + 1,1) commutation relations

[Jab, Jcd ] = i(ηadJbc + ηbcJad − ηacJbd − ηbdJac) (22)

This shows the isomorphism between the conformal group in d
dimension (Euclidean Space) and the group SO(d + 1,1)

We could generalize this result, for the case of dimensions
d = p + q ≥ 3, the conformal group of Rp,q is SO(p + 1,q + 1)
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Conformal Symmetry in dimension d = 2

The condition for invariance under infinitesimal conformal
transformations in two dimensions reads as follows:

∂0ε0 = ∂1ε1, ∂0ε1 = −∂1ε0 (23)

which we recognise as the familiar Cauchy-Riemann equations
appearing in complex analysis. A complex function whose real and
imaginary parts satisfy above conditions is a holomorphic function. So
we can introduce complex variables in the following way

z = x0 + ix1, ε = ε0 + iε1, ∂z =
1
2

(∂0 − i∂1), (24)

z̄ = x0 − ix1, ε̄ = ε0 − iε1, ∂z̄ =
1
2

(∂0 + i∂1), (25)

Since ε(z) is holomorphic, so is f (z) = z + ε(z) which gives rise to an
infinitesimal two-dimensional conformal transformation z → f (z)
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Since ε has to be holomorphic, we can perform a Laurent expansion of
ε.

z ′ = z + ε(z) = z +
∑
n∈Z

εnzn+1 (26)

z̄ ′ = z̄ + ε̄(z̄) = z̄ +
∑
n∈Z

ε̄nz̄n+1 (27)

The generators corresponding to a transformation for a particular n are

ln = −zn+1∂z l̄n = −z̄n+1∂z̄ (28)

These generators obey the following commutation relations:

[ln, lm] = (n −m)ln+m (29)

[̄ln, l̄m] = (n −m)̄ln+m (30)

[ln, l̄m] = 0 (31)

Thus the conformal algebra is the direct sum of two isomorphic
algebras, which called Witt algebra.
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Global Conformal Transformation in two dimension

Even on the Riemann sphere S2 ' C ∪ {∞}, ln,n ≥ −1 are
non-singular at z = 0 while ln,n ≤ 1 are non-singular at z =∞. We
arrive the conclusion that
Globally defined conformal transformations on the Riemann sphere S2

are generated by {l−1, l0, l1}
The operator l−1 generates translations z → z + b
In order to get a geometric intuition of l0, we perform the change
of variables z = reiφ to find

l0 + l̄0 = −r∂r , i(l0 − l̄0) = −∂φ, (32)

so l0 + l̄0 is the generator for two-dimensional dilations and
i(l0 − l̄0) is the generators for rotations
The operator l1 corresponds to special conformal transformations
which are translations for the variable w = −1

z
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In summary we have argued that the operators {l−1, l0, l1} generates
transformations of the form

z → az + b
cz + d

with ad − bc = 1, a,b, c,d ∈ C (33)

which is the Mobius group SL(2,C)/Z2 = SO(3,1) . The Z2 is due to
the fact that the transformation is unaffected by taking all of a,b, c,d to
minus themselves.
The global conformal algebra is also useful for characterizing
properties of physical states. In the basis of eigenstates of the two
operators l0 and l̄0 are denote eigenvalues by h, h̄. The scaling
dimension ∆ and the spin s of the state are given by ∆ = h + h̄ and
s = h − h̄.
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Radial quantization

In the following, we will focus our studies on conformal field theories
defined on Euclidean two-dimensional flat space. We denote the
Euclidean time direction by τ , and the space direction by σ.
Next, we compactify the space direction σ in a circle of unit radius. The
CFT we obtain in this way is thus defined on a cylinder of infinite
length. We can map this region into the whole complex plane by the
mapping

z = exp(τ + iσ) (34)

Such a procedure of identifying dilatations with the Hamiltonian and
circles about the origin with equal-time surfaces is called radial
quantization.
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Since the energy-momentum tensor Tαβ generates local
translations, the dilatation current should be just Dα = Tαβxβ

The statement of scale invariance implies that the
energy-momentum tensor to be traceless
With the conservation law, we arrive to the conclusion that
Tzz̄ = 0, the field Tzz ≡ T is an analytic function of z. Similarly
Tz̄z̄ ≡ T̄ depends only on z̄ and so is an anti-analytic field.

Di Xu (UCSC) Virasoro and Kac-Moody Algebra 2015/06/11 16 / 24



In radial quantization, the integral of the component of the current
orthogonal to an ”equal-time”(constant radius) surfaces becomes∫

j0(x)dx →
∫

jr (θ)dθ. Thus we should take

Q =
1

2πi

∮
(dzT (z)ε(z) + dz̄T̄ (z̄)ε̄(z̄)) (35)

as the conserved charge. The line integral is performed over some
circle of fixed radius and the integrations are taken in the
counter-clockwise sense.
The variation of any filed is given by the ”equal-time” commutator with
the charge

δε,ε̄Φ(w , w̄) =
1

2πi

∮
[dzT (z)ε(z),Φ(w , w̄)] + [dz̄T̄ (z̄)ε̄(z̄),Φ(w , w̄)]

(36)
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Primary fields

Under a general conformal transformation,

Φ(z, z̄)→ (
∂f
∂z

)h(
∂ f̄
∂z̄

)h̄Φ(f (z), f̄ (z̄)) (37)

where h and h̄ are real-valued. This transformation property defines
what is known as a primary field Φ of conformal weight (h, h̄).
Not all fields in CFT will turn out to have this transformation property,
the rest of the fields are known as secondary fields. Infinitesimally,
under z → z + ε(z), z̄ → z̄ + ε̄(z̄), we have

δε,ε̄Φ(z, z̄) = ((h∂ε+ ε∂) + (h̄∂̄ε̄+ ε̄∂̄))Φ(z, z̄) (38)
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Operator Product Expansion

Compare the two infinitesimal transformation on a primary field and
use residue theorem, we find the operator product expansion that
defines the notion of a primary field is abbreviated as

T (z)Φ(w , w̄) =
h

(z − w)2 Φ(w , w̄) +
1

z − w
∂w Φ(w , w̄) + ... (39)

T̄ (z̄)Φ(w , w̄) =
h̄

(z̄ − w̄)2 Φ(w , w̄) +
1

z̄ − w̄
∂w̄ Φ(w , w̄) + ... (40)

and encodes the conformal transformation properties of Φ.
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Central Charge and the Virasoro algebra

Not all fields satisfy the simple transformation as a primary field.
Derivatives of fields, for example, in general have more
complicated transformation properties.
A secondary field is any field that has higher than the double pole
singularity in its operator product expansion with T .
In general, the fields in a CFT can be grouped into families [φn]
each of which contains a single primary field φn and an infinite set
of secondary fields, called its descendants. These comprise the
irreducible representations of the conformal group, and the
primary field is the highest weight of the representation.
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An example is the stress-energy tensor. By performing two conformal
transformations in succession, we can determine its operator product
with itself to take the form

T (z)T (w) =
c/2

(z − w)4 +
2

(z − w)2 T (w) +
1

z − w
∂T (w) + ... (41)

The constant c is known as the central charge and its value in general
will depend on the particular theory under consideration.
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Now define the Laurent expansion of the stress-energy tensor,

T (z) =
∑

z−n−2Ln T̄ (z̄) =
∑

z̄−n−2L̄n (42)

which is formally inverted by the relations

Ln =

∮
dz
2πi

zn+1T (z) L̄n =

∮
dz̄
2πi

z̄n+1T̄ (z̄) (43)

Then we can compute the algebra of commutators satisfied by the
modes Ln and L̄n

[Ln,Lm] = (

∮
dz
2πi

∮
dw
2πi
− dw

2πi

∮
dz
2πi

)zn+1T (z)wm+1T (w) (44)

=

∮
dz
2πi

∮
dw
2πi

zn+1wm+1(
c/2

(z − w)4 +
2T (w)

(z − w)2 +
∂T (w)

z − w
+ ...)

(45)

= (n −m)Ln+m +
c

12
(n3 − n)δn+m,0 (46)
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The same results for T̄ , so we find two copies of Witt algebra with
central extension, called the Virasoro algebra.
Every conformally invariant quantum field theory determines a
representation of this algebra with some value c and c̄.
We can check that the subalgebra L−1,L0,L1 doesn’t change.
Thus the global conformal group remains an exact symmetry
group despite the central charge.
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