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Let A be a real or complex n × n matrix. The adjoint operator adA, which is a linear
operator acting on the vector space of n× n matrices, is defined by

adA(B) = [A,B] ≡ AB − BA . (1)

Note that
(adA)

n(B) =
[
A, · · · [A, [A,B]] · · ·

]

︸ ︷︷ ︸

n

(2)

involves n nested commutators.

Theorem 1:

eABe−A = exp(adA)(B) ≡

∞∑

n=0

1

n!
(adA)

n(B) = B + [A,B] + 1
2
[A, [A,B]] + · · · . (3)

Proof: Define
B(t) ≡ etABe−tA , (4)

and compute the Taylor series of B(t) around the point t = 0. A simple computation yields
B(0) = B and

dB(t)

dt
= AetABe−tA − etABe−tAA = [A,B(t)] = adA(B(t)) . (5)

Higher derivatives can also be computed. It is a simple exercise to show that:

dnB(t)

dtn
= (adA)

n(B(t)) . (6)

Theorem 1 then follows by substituting t = 1 in the resulting Taylor series expansion of
B(t).

We now introduce two auxiliary functions that are defined by their power series:

f(z) =
ez − 1

z
=

∞∑

n=0

zn

(n+ 1)!
, |z| < ∞ , (7)

g(z) =
ln z

z − 1
=

∞∑

n=0

(1− z)n

n + 1
, |1− z| < 1 . (8)

These functions satisfy:

f(ln z) g(z) = 1 , for |1− z| < 1 , (9)

f(z) g(ez) = 1 , for|z| < ∞ . (10)
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Theorem 2:

eA(t) d

dt
e−A(t) = −f(adA)

(
dA

dt

)

, (11)

where f(z) is defined via its Taylor series in eq. (7). Note that in general, A(t) does not
commute with dA/dt. A simple example, A(t) = A+ tB where A and B are independent of
t and [A,B] 6= 0, illustrates this point. In the special case where [A(t), dA/dt] = 0, eq. (11)
reduces to

eA(t) d

dt
e−A(t) = −

dA

dt
, if

[

A(t),
dA

dt

]

= 0 . (12)

Proof: Define

B(s, t) ≡ esA(t) d

dt
e−sA(t) , (13)

and compute the Taylor series of B(s, t) around the point s = 0. It is straightforward to
verify that B(0, t) = 0 and

dnB(s, t)

dsn

∣
∣
∣
∣
s=0

= −(adA(t))
n−1

(
dA

dt

)

, (14)

for all positive integers n. Assembling the Taylor series for B(s, t) and inserting s = 1 then
yields Theorem 2. Note that if [A(t), dA/dt] = 0, then (dnB(s, t)/dsn)s=0 = 0 for all n ≥ 2,
and we recover the result of eq. (12).

Theorem 3:
d

dt
e−A(t) = −

∫ 1

0

e−sA
dA

dt
e−(1−s)A ds . (15)

This integral representation is an alternative version of Theorem 2.

Proof: Consider

d

ds

(
e−sA e−(1−s)B

)
= −Ae−sA e−(1−s)B + e−sA e−(1−s)BB

= e−sA(B − A)e−(1−s)B . (16)

Integrate eq. (16) from s = 0 to s = 1.

∫ 1

0

d

ds

(
e−sA e−(1−s)B

)
= e−sA e−(1−s)B

∣
∣
∣
∣

1

0

= e−A − e−B . (17)

Using eq. (16), it follows that:

e−A − e−B =

∫ 1

0

ds e−sA(B − A)e−(1−s)B . (18)

In eq. (18), we can replace B −→ A + hB, where h is an infinitesimal quantity:

e−A − e−(A+hB) = h

∫ 1

0

ds e−sABe−(1−s)(A+hB) . (19)
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Taking the limit as h → 0,

lim
h→0

1

h

[
e−(A+hB) − e−A

]
= −

∫ 1

0

ds e−sABe−(1−s)A . (20)

Finally, we note that the definition of the derivative can be used to write:

d

dt
e−A(t) = lim

h→0

e−A(t+h) − e−A(t)

h
. (21)

Using

A(t + h) = A(t) + h
dA

dt
+O(h2) , (22)

it follows that:

d

dt
e−A(t) = lim

h→0

exp

[

−

(

A(t) + h
dA

dt

)]

− exp[−A(t)]

h
. (23)

Thus, we can use the result of eq. (20) with B = dA/dt to obtain

d

dt
e−A(t) = −

∫ 1

0

e−sA
dA

dt
e−(1−s)A ds , (24)

which is the result quoted in Theorem 3.

Second proof of Theorem 2: One can now derive Theorem 2 directly from Theorem 3.
Multiply eq. (15) by eA(t) to obtain:

eA(t) d

dt
e−A(t) = −

∫ 1

0

e(1−s)A dA

dt
e−(1−s)A ds . (25)

Using Theorem 1 [see eq. (3)],

eA(t) d

dt
e−A(t) = −

∫ 1

0

exp
[
ad(1−s)A

]
(
dA

dt

)

ds

= −

∫ 1

0

e(1−s)adA

(
dA

dt

)

ds . (26)

Changing variables s −→ 1− s, it follows that:

eA(t) d

dt
e−A(t) = −

∫ 1

0

es adA
(
dA

dt

)

ds . (27)

The integral over s is trivial, and one finds:

eA(t) d

dt
e−A(t) =

1− e adA

adA

(
dA

dt

)

= −f(adA)

(
dA

dt

)

, (28)

which coincides with Theorem 2.
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Theorem 4: The Baker-Campbell-Hausdorff (BCH) formula

ln
(
eAeB

)
= B +

∫ 1

0

g [exp(t adA) exp(adB)] (B) dt , (29)

where g(z) is defined via its Taylor series in eq. (8). Since g(z) is only defined for |1−z| < 1,
it follows that the BCH formula for ln

(
eAeB

)
converges provided that ‖eAeB − I‖ < 1,

where I is the identity matrix and ‖ · · · ‖ is a suitably defined matrix norm. Expanding
the BCH formula, using the Taylor series definition of g(z), yields:

eAeB = exp
(
A+B + 1

2
[A,B] + 1

12
[A, [A,B]] + 1

12
[B, [B,A]] + . . .

)
, (30)

assuming that the resulting series is convergent. An example where the BCH series does
not converge occurs for the following elements of SL(2,R):

M =

(
−e−λ 0
0 −eλ

)

= exp

[

λ

(
1 0
0 −1

)]

exp

[

π

(
0 1

−1 0

)]

, (31)

where λ is any nonzero real number. It is easy to prove1 that no matrix C exists such that
M = expC. Nevertheless, the BCH formula is guaranteed to converge in a neighborhood
of the identity of any Lie group.

Proof of the BCH formula: Define

C(t) = ln(etAeB) . (32)

or equivalently,
eC(t) = etAeB . (33)

Using Theorem 1, it follows that for any complex n× n matrix H ,

exp
[
adC(t)

]
(H) = eC(t)He−C(t) = etAeBHe−tAe−B

= etA [exp(adB)(H)] e−tA

= exp(adtA) exp(adB)(H) . (34)

1The characteristic equation for any 2× 2 matrix A is given by

λ2 − (Tr A)λ+ det A = 0 .

Hence, the eigenvalues of any 2× 2 traceless matrix A ∈ sl(2,R) [that is, A is an element of the Lie algebra
of SL(2,R)] are given by λ± = ±(−det A)1/2. Then,

Tr eA = exp(λ+) + exp(λ−) =

{

2 cosh |det A|1/2 , if det A ≤ 0 ,

2 cos |det A|1/2 , if det A > 0 .

Thus, if det A ≤ 0, then Tr eA ≥ 2, and if det A > 0, then −2 ≤ Tr eA < 2. It follows that for any
A ∈ sl(2,R), Tr eA ≥ −2. For the matrix M defined in eq. (31), Tr M = −2 coshλ < −2 for any nonzero
real λ. Hence, no matrix C exists such that M = expC.
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Hence, the following operator equation is valid:

exp
[
adC(t)

]
= exp(t adA) exp(adB) , (35)

after noting that exp(adtA) = exp(t adA). Next, we use Theorem 2 to write:

eC(t) d

dt
e−C(t) = −f(adC(t))

(
dC

dt

)

. (36)

However, we can compute the left-hand side of eq. (36) directly:

eC(t) d

dt
e−C(t) = etAeB

d

dt
e−Be−tA = etA

d

dt
e−tA = −A , (37)

since B is independent of t, and tA commutes with d

dt
(tA). Combining the results of

eqs. (36) and (37),

A = f(adC(t))

(
dC

dt

)

. (38)

Multiplying both sides of eq. (38) by g(exp adC(t)) and using eq. (10) yields:

dC

dt
= g(exp adC(t))(A) . (39)

Employing the operator equation, eq. (35), one may rewrite eq. (39) as:

dC

dt
= g(exp(t adA) exp(adB))(A) , (40)

which is a differential equation for C(t). Integrating from t = 0 to t = T , one easily solves
for C. The end result is

C(T ) = B +

∫
T

0

g(exp(t adA) exp(adB))(A) dt , (41)

where the constant of integration, B, has been obtained by setting T = 0. Finally, setting
T = 1 in eq. (41) yields the BCH formula.
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