The Gell-Mann matrices are the traceless hermitian generators of the Lie algebra $\mathfrak{su}(3)$, analogous to the Pauli matrices of $\mathfrak{su}(2)$.

The eight Gell-Mann matrices are defined by:

$$\lambda_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad \lambda_{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad \lambda_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$
$$\lambda_{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \qquad \lambda_{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \qquad \lambda_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix},$$
$$\lambda_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \qquad \lambda_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

The Gell-Mann matrices satisfy commutation relation,

 $[\lambda_a, \lambda_b] = 2i f_{abc} \lambda_c, \qquad \text{where } a, b, c = 1, 2, 3, \dots, 8,$

where there is an implicit sum over c, and the structure constants f_{abc} are totally antisymmetric under the interchange of any pair of indices. The explicit form of the non-zero $\mathfrak{su}(3)$ structure constants are listed in Table 1.

abc	f_{abc}	abc	f_{abc}
123	1	345	$\frac{1}{2}$
147	$\frac{1}{2}$	367	$-\frac{1}{2}$
156	$-\frac{1}{2}$	458	$\frac{1}{2}\sqrt{3}$
246	$\frac{1}{2}$	678	$\frac{1}{2}\sqrt{3}$
257	$\frac{1}{2}$		

Table 1: Non-zero structure constants¹ f_{abc} of $\mathfrak{su}(3)$.

 $^1 \mathrm{The}~f_{abc}$ are antisymmetric under the permutation of any pair of indices.

The following properties of the Gell-Mann matrices are also useful:

$$\operatorname{Tr}(\lambda_a \lambda_b) = 2\delta_{ab}, \qquad \{\lambda_a, \lambda_b\} = 2d_{abc}\lambda_c + \frac{4}{3}\delta_{ab},$$

where $\{A, B\} \equiv AB + BA$ is the anticommutator of A and B. It follows that

$$f_{abc} = -\frac{1}{4}i \operatorname{Tr} \left(\lambda_a[\lambda_b, \lambda_c] \right), \qquad \qquad d_{abc} = \frac{1}{4} \operatorname{Tr} \left(\lambda_a\{\lambda_b, \lambda_c\} \right).$$

The d_{abc} are totally symmetric under the interchange of any pair of indices. The explicit form of the non-zero d_{abc} are listed in Table 2.

abc	d_{abc}	abc	d_{abc}
118	$\frac{1}{\sqrt{3}}$	355	$\frac{1}{2}$
146	$\frac{1}{2}$	366	$-\frac{1}{2}$
157	$\frac{1}{2}$	377	$-\frac{1}{2}$
228	$\frac{1}{\sqrt{3}}$	448	$-\frac{1}{2\sqrt{3}}$
247	$-\frac{1}{2}$	558	$-\frac{1}{2\sqrt{3}}$
256	$\frac{1}{2}$	668	$-\frac{1}{2\sqrt{3}}$
338	$\frac{1}{\sqrt{3}}$	778	$-\frac{1}{2\sqrt{3}}$
344	$\frac{1}{2}$	888	$-\frac{1}{\sqrt{3}}$

Table 2: Non-zero independent elements of the tensor² d_{abc} of $\mathfrak{su}(3)$.

²The d_{abc} are symmetric under the permutation of any pair of indices.

The d_{abc} can be employed to construct a cubic Casimir operator for $\mathfrak{su}(3)$,

$$C_3 \equiv \frac{1}{8} d_{abc} \lambda_a \lambda_b \lambda_c$$

where all repeated indices are summed over. The overall factor of $\frac{1}{8}$ is conventional. It is straightforward to prove that,

$$[\lambda_a, C_3] = 0$$
, for $a = 1, 2, 3, \dots, 8$.

Since C_3 commutes with all the $\mathfrak{su}(3)$ generators of the defining representation, it follows that C_3 is a multiple of the identity. One can define C_3 for any *d*-dimensional irreducible representation of $\mathfrak{su}(3)$. Denoting the traceless hermitian generators by R_a ,¹

$$C_3(R) \equiv d_{abc} R_a R_b R_c = c_{3R} \mathbf{I} \,,$$

where **I** is the $d \times d$ identity matrix. For an irreducible representation of $\mathfrak{su}(3)$ denoted by (n, m), corresponding to a Young diagram with n + m boxes in the first row and n boxes in the second row, the eigenvalue of the cubic Casimir operator is given by:

$$c_3 = \frac{1}{2}(m-n)\left[\frac{2}{9}(m+n)^2 + \frac{1}{9}mn + m + n + 1\right].$$

¹The traceless hermitian generators R_a satisfy $[R_a, R_b] = i f_{abc} R_c$. In the defining representation of $\mathfrak{su}(3)$, $R_a = \frac{1}{2}\lambda_a$ and in the adjoint representation of $\mathfrak{su}(3)$, $(R_a)_{bc} = -i f_{abc}$.