
Notes on the spontaneous breaking of SU(N)and SO(N) via a seond-rank tensor multipletHoward E. HaberSanta Cruz Institute for Partile PhysisUniversity of California, Santa Cruz, CA 95064, USAAbstratThe group theory of the spontaneous breaking of SU(N) is ex-plored. Two spei� ases are analyzed in detail: (i) SU(N) is brokento SO(N) via a salar �eld vauum expetation value for a seond-ranksymmetri tensor multiplet, and (ii) SU(2N) or SU(2N +1) is brokento Sp(2N) via a salar �eld vauum expetation value for a seond-rank antisymmetri tensor multiplet. The ase of the spontaneousbreaking of SO(2N) or SO(2N +1) to U(N) via a salar �eld vauumexpetation value for a seond-rank antisymmetri tensor multiplet isalso treated.
1. IntrodutionIn these notes, I study the group theory of the spontaneous breaking ofa global SU(N)-symmetri �eld theory via a salar �eld vauum expetationvalue for seond-rank tensor multiplet, h�i � �0. The ases of a symmetritensor and anti-symmetri tensor �eld are separately examined. I fous onone partiular symmetry breaking pattern in eah ase orresponding to themaximal degeneray of non-zero eigenvalues of �y0�0. The ase of sponta-neous breaking of SO(2N) or SO(2N +1) to U(N) via a salar �eld vauumexpetation value for a seond-rank antisymmetri tensor multiplet is verysimilar to the orresponding breaking of SU(2N) or SU(2N +1). A previousanalysis of these (and other) ases an be found in ref. [1℄.1



2. Symmetry breaking via a seond-rank symmetritensorLet �ab be a symmetri seond-rank tensor whih transforms under SU(N)as: �ab �! Ua U bd �bd ; (1)where U is an N �N unitary matrix with unit determinant. Equivalently, inmatrix form � �! U�UT , where UT is the transpose of U . Suppose that � isa multiplet of salar �elds whose Lagrangian is invariant under global SU(N)transformations. If � aquires a vauum expetation value h�i � �0, thenthe SU(N) symmetry will be broken. If there exists a subgroup H of SU(N),suh that U�0UT = U for all U 2 H, then the global SU(N) symmetry isspontaneously broken to H. Writing U = exp i�aTa where the Ta are theunbroken generators (whih span the unbroken subgroup H), it follows thatfor in�nitesimal �a, (1 + i�aTa)�0(1 + i�aT Ta ) = �0 ; (2)whih implies that Ta�0 + �0T Ta = 0 : (3)Thus, it is possible to �nd a basis for the traeless hermitian SU(N) gener-ators given by fTa; Xbg suh that the Ta satisfy eq. (3). In this basis, thebroken generators Xb are orthogonal to the Ta, that is Tr (TaXb) = 0.The identity of the unbroken subgroup H depends on the hoie of �0(whih depends on the underlying dynamis responsible for the spontaneoussymmetry breaking). Here, I shall onsider the ase of H=SO(N), for whihthe most general form for �0 is a omplex symmetri N � N matrix thatsatis�es �y0�0 = �0�y0 = jj2IN , where  2 C and IN is the N � N unitmatrix. This is summarized by the following theorem.Theorem: Suppose that �0 is an N � N omplex symmetri matrixthat satis�es �y0�0 = �0�y0 = jj2IN for some omplex number . Then,if the generators of SU(N) in the de�ning (N -dimensional) representationare given by fTa; Xbg, where the Ta and Xb are traeless hermitian N � Nmatries that satisfy: Ta�0 + �0T Ta = 0 ; (4)Xb�0 � �0XTb = 0 ; (5)2



then the Ta span an unbroken SO(N) Lie subalgebra, while the Xb are thebroken generators that span an SU(N)=SO(N) homogeneous spae. Further-more, Tr (TaXb) = 0.Proof: First, I show that if �y0�0 = �0�y0 = jj2IN and Ta�0+�0T Ta = 0,then the Ta span an SO(N) Lie algebra. Note that these two onditions imply:jj2 T Ta = ��y0Ta�0 : (6)At this point, I note that the Takagi fatorization [2, 3℄ for any omplexsymmetri matrixM orresponds to the statement that there exists a unitarymatrix V suh that VMV T is diagonal with non-negative entries given bythe positive square roots of the eigenvalues of MM y (or M yM). In our ase,this result implies that there exists a unitary matrix V suh that1V �0V T =  IN : (7)The inverse of this result is (V T )�1�y0V �1 = � IN (sine �y0 = jj2��10 ). I nowde�ne: eTa � V TaV �1, where V is the unitary matrix appearing in eq. (7).Then, inserting this result into eq. (6), it follows that:eT Ta = �1jj2 (V T )�1�y0V �1 eTaV �0V T= � eTa : (8)Likewise, one an use the same matrix V to de�ne fX � V XV �1. By ananalogous omputation, jj2XT = �y0X�0, whih implies that fXTb = fXb.Moreover, sine the generators of SU(N) are traeless and hermitian, it fol-lows that the fXb are also traeless and real.Thus, I have exhibited a similarity transformation that transforms thebasis of the Lie algebra spanned by the Ta to one that is spanned by the eTa.Sine the i eTa are real antisymmetri matries, one immediately reognizesthis Lie algebra as that of SO(N). If an arbitrary element of the unbrokenLie algebra is exponentiated, it follows that exp i�aTa is related by a simi-larity transformation to exp i�a eTa. The latter onsists of arbitrary N � Nreal orthogonal matries, whih implies that the exp i�aTa onstitutes an N1Stritly speaking, the Takagi fatorization yields a diagonal matrix with non-negativediagonal elements. If  = jje2i� , one an obtain eV �0 eV T = jjIN by taking eV = ei�V .However, this step is not neessary for the present argument.3



dimensional representation that is equivalent to the N -dimensional de�ningrepresentation of SO(N).Finally, I note that from jj2 T Ta = ��y0Ta�0 and jj2XTb = �y0Xb�0 itfollows that jj2 T Ta XTb = �y0TaXb�0 (sine �y0�0 = jj2IN ). Taking the traeyields Tr TaXb = �Tr TaXb, or equivalently Tr TaXb = 0. To show that thefTa; Xbg span the full SU(N) Lie algebra, it is onvenient to ount the numberof independent generators after applying the similarity transformation thatonverts the fTa; Xbg into f eTa; fXbg. I showed above that the i eTa are realantisymmetri matries whereas the fXb are traeless real symmetri matries.This implies that there are 12N(N � 1) independent eTa and 12N(N + 1) � 1independent fXb (the 1 is subtrated to aount for the extra ondition thatthe fXb are traeless). The total number of SU(N) generators is thereforeN2 � 1 as expeted.The above results are easily veri�ed expliitly for N = 3. Consider forexample a ase in whih �0 = 0B� 0 0 10 1 01 0 01CA ; (9)whih learly satis�es �y0�0 = �0�y0 = jj2I. Using the Gell-Mann matries12�a as the generators of SU(3), it is easy to hek that Ta�0 + �0T Ta = 0implies that Ta = 1(�1��6)+2(�2��7)+3(�3+p3�8), where i 2 R. Thatis, f12(�1� �6) ; 12(�2� �7) ; 12(�3 +p3�8)g spans an SO(3) Lie subalgebra ofthe SU(3) Lie algebra. This matrix representation orresponds to the adjointrepresentation of an SU(2) subalgebra, whih when exponentiated yields arepresentation equivalent to the de�ning representation of SO(3).3. Symmetry breaking of SU(2N) via a seond-rankantisymmetri tensorThe ase of symmetry breaking via an antisymmetri tensor exhibitsmany similar features. First, I shall onsider the ase of a global SU(2N)symmetry group. Let �ab be an antisymmetri seond-rank tensor whihtransforms under SU(2N) as � �! U�UT , where U is a 2N � 2N unitarymatrix with unit determinant. If � aquires a vauum expetation value4



h�i � �0, then the SU(2N) symmetry will be spontaneously broken. Writ-ing U = exp i�aTa where the Ta are the unbroken generators, I again �ndTa�0 + �0T Ta = 0 : (10)Thus, it is possible to �nd a basis for the traeless hermitian SU(2N) gener-ators given by fTa; Xbg suh that the Ta satisfy eq. (10) and Tr (TaXb) = 0.The unbroken subgroup H depends on the hoie of �0. Here, I shallonsider the ase of H=Sp(2N), for whih the most general form for �0is a omplex antisymmetri 2N � 2N matrix that satis�es �y0�0 = �0�y0 =jj2I2N , where  2 C and I2N is the 2N�2N unit matrix. This is summarizedby the following theorem.Theorem: Suppose that �0 is a 2N�2N omplex antisymmetri matrixthat satis�es �y0�0 = �0�y0 = jj2I2N for some omplex number . Then,if the generators of SU(2N) in the de�ning (2N -dimensional) representationare given by fTa; Xbg, where the Ta and Xb are traeless hermitian 2N � 2Nmatries that satisfy: Ta�0 + �0T Ta = 0 ; (11)Xb�0 � �0XTb = 0 ; (12)then the Ta span an unbroken Sp(2N) Lie subalgebra, while the Xb arethe broken generators that span an SU(2N)=Sp(2N) homogeneous spae.Furthermore, Tr (TaXb) = 0.Proof: First, I show that if �y0�0 = �0�y0 = jj2I2N and Ta�0+�0T Ta = 0,then the Ta span an Sp(2N) Lie algebra. Note that these two onditionsimply: jj2 T Ta = ��y0Ta�0 : (13)For any even-dimensional omplex antisymmetri matrix M , there existsa unitary matrix W suh that WMW T = diag(J1 ;J2 ; : : : ;Jn) is blokdiagonal, where eah blok is a 2�2 matrix of the form Jn � � 0 zn�zn 0 �, wherezn 2 C and the jznj2 are the eigenvalues of MM y (or M yM).2 Applying thisresult to �0, I note that the eigenvalues of �0�y0 are all degenerate and equal2This result for omplex antisymmetri matries is the analog of the Takagi fatoriza-tion for symmetri matries [4℄. Moreover, it is always possible to �nd a suitable hoiefor the unitary matrix W suh that the zi are real and non-negative. However, this stepis not neessary for the present argument. 5



to jj2. Consider the matrix J � � 0 IN�IN 0 � ; (14)where IN is the N � N identity matrix. Sine JJy = I2N , it follows thatone an �nd unitary matries W1 and W2 suh that W1�0W T1 = W2JW T2 =diag(J ; J ; : : : ; J ), where J � � 0 1�1 0� : (15)That is, the fatorization of �0 and J both yield the same blok diagonalmatrix onsisting of N idential 2 � 2 bloks onsisting of J . Thus, thereexists a unitary matrix V =W�12 W1 suh thatV �0V T =  J : (16)The inverse of this result is (V T )�1�y0V �1 = �� J (sine �y0 = jj2��10 andJ�1 = �J). I now de�ne eTa � V TaV �1, where V is the unitary matrixappearing in eq. (16). Then, inserting this result into eq. (13), it followsthat: eT Ta = �1jj2 (V T )�1�y0V �1 eTaV �0V T= J eTaJ : (17)Likewise, one an use the same matrix V to de�ne fXb � V XbV �1. By ananalogous omputation, jj2XT = �y0X�0, whih implies that fXTb = �JfXbJ .Thus, I have exhibited a similarity transformation that transforms thebasis of the Lie algebra spanned by the Ta to one that is spanned by theeTa. Sine the eTa are traeless hermitian matries3 that satisfy eT Ta = J eTaJ[where J is de�ned by eq. (14)℄, one immediately reognizes this Lie alge-bra as that of Sp(2N).4 If an arbitrary element of the unbroken Lie algebra3Sine J2 = �I2N , it follows from eT Ta = J eTaJ that Tr Ta = 0. This implies that thegroup theory for the breaking of U(2N) to Sp(2N) would work in almost preisely thesame way with one di�erene|the unbroken generators Xb would not be traeless.4This is atually the unitary sympleti Lie algebra, whih is the ompat real formof the omplex sympleti Lie algebra. Some books use the notation Sp(N) where I haveused Sp(2N). For more details, see ref. [5℄. 6



is exponentiated, it follows that exp i�aTa is related by a similarity trans-formation to exp i�a eTa. The latter onsists of arbitrary 2N � 2N unitarysympleti matries, whih implies that the exp i�aTa onstitutes an 2N di-mensional representation that is equivalent to the 2N -dimensional de�ningrepresentation of Sp(2N).Finally, I note that from jj2 T Ta = ��y0Ta�0 and jj2XTb = �y0Xb�0 it fol-lows that jj2 T Ta XTb = �y0TaXb�0 (sine �y0�0 = jj2I2N ). Taking the traeyields Tr TaXb = �Tr TaXb, or equivalently Tr TaXb = 0. To show thatthe fTa; Xbg span the full SU(2N) Lie algebra, it is onvenient to ount thenumber of independent generators after applying the similarity transforma-tion that onverts the fTa; Xbg into f eTa; fXbg. Sine these are all SU(2N)generators, they are traeless hermitian matries. Moreover, I showed abovethat the eTa satisfy eTa = J eTaJ , whereas the fXb are traeless and satisfyfXTb = �JfXbJ . More expliitly,eTa = � A BBy �AT � ; fXb = � C DDy CT � ; (18)where A, B, C and D are N � N omplex matries suh that A and C arehermitian, B is symmetri, D is antisymmetri and Tr C = 0. Thus, thenumber of independent real parameters that desribe eTa orresponds to thenumber of parameters needed to de�ne the hermitian matrix A and the om-plex symmetri matrix B, whih is equal to N2 + N(N + 1) = N(2N + 1).Similarly, number of independent real parameters that desribe fXb orre-sponds to the number of parameters needed to de�ne the traeless hermi-tian matrix C and the omplex antisymmetri matrix D, whih is equal toN2�1+N(N+1) = N(2N�1)�1. The total number of SU(2N) generatorsis therefore (2N)2 � 1 as expeted.4. Symmetry breaking of SU(2N + 1) via a seond-rankantisymmetri tensorFor the ase of spontaneous breaking of an SU(2N + 1) global symmetryby a seond-rank antisymmetri tensor �eld, the analysis of the previoussetion requires some modi�ation. In this ase, � is a (2N + 1)� (2N + 1)matrix, whih aquires a vauum expetation value �0. One again, the7



unbroken generators Ta satisfy:Ta�0 + �0T Ta = 0 : (19)In this ase, one an �nd a basis for the traeless hermitian SU(2N+1) gener-ators given by fTa; Xb; Yg suh that the Ta satisfy eq. (19) and Tr (TaXb) =Tr (TaY) = Tr (XbY) = 0.I shall identify the unbroken subgroup H under the assumption that �0satis�es: �y0�0 = �0�y0 = jj2 � I2N 00 0� ; (20)where  2 C. In this ase, H = Sp(2N). This is summarized by the followingtheorem.Theorem: Suppose that �0 is a (2N + 1)� (2N + 1) omplex antisym-metri matrix that satis�es eq. (20) for some omplex number . Then, ifthe generators of SU(2N + 1) in the de�ning [(2N + 1)-dimensional℄ repre-sentation are given by fTa; Xb; Yg, where the Ta, Xb and Y are traelesshermitian (2N + 1)� (2N + 1) matries that satisfy:Ta�0 + �0T Ta = 0 ; (21)Xb�0 � �0XTb = 0 ; (22)�y0Y�0 = 0 ; (23)then the Ta span an unbroken Sp(2N) Lie subalgebra, while the fXb; Yg arethe broken generators that span an SU(2N +1)=Sp(2N) homogeneous spae.Furthermore, Tr (TaXb) = Tr (TaY) = Tr (XbY) = 0.Proof: First, I show that if �0 satis�es eq. (20) and Ta�0 + �0T Ta = 0,then the Ta span an Sp(2N) Lie algebra. Here, I note that for any odd-dimensional omplex antisymmetri matrixM , there exists a unitary matrixW suh that WMW T = diag(J1 ;J2 ; : : : ;JN ; 0) where Jn � � 0 zn�zn 0 �, withzn 2 C and the jznj2 are the eigenvalues of MM y (or M yM) [4℄. Introduethe (2N + 1)� (2N + 1) matrix:K � �J 00 0� ; (24)where J is the 2N � 2N matrix given by eq. (14). The zeros shown above�ll out the last row and the last olumn of the matrix K. Then applying the8



above fatorization to the antisymmetri matries �0 and K, it follows thatthere exists a unitary matrix V suh thatV �0V T = K : (25)Next, I multiply eq. (19) on the left by V and the right by V T . De�ningeTa � V TaV �1 as before and using eq. (25), one easily derives:K eT Ta = � eTaK : (26)Using the fat that eTa is traeless and hermitian, eq. (26) has a uniquesolution: eTa = � ta 00 0� ; (27)where ta is an 2N � 2N hermitian matrix that satis�es tTa = JtaJ . Thus, theeTa span an Sp(2N) Lie subalgebra of the SU(2N + 1) Lie algebra.Consider next the unbroken generators Xb and Y, whih satisfy eqs. (22)and (23), and de�ne fXb � V XbV �1 and eY � V YV �1 Then eq. (25) impliesthat KfXTb = fXbK ; Ky eYK = 0 : (28)Using the fat that fXb and eY are traeless and hermitian, eq. (28) has aunique solution:fXb = �xb 00 �Tr xb � ; eY = � 0 yyy 0 � ; (29)where xb is an 2N � 2N hermitian matrix that satis�es xTb = �JxbJ , and yis a omplex 2N -dimensional olumn vetor. From the expliit forms above,it is easy to hek that Tr ( eTafXb) = Tr ( eTa eY) = Tr (fXb eY) = 0, whih impliesthat Tr (TaXb) = Tr (TaY) = Tr (XbY) = 0.To show that the fTa; Xb; Yg span the full SU(2N + 1) Lie algebra, itis onvenient to ount the number of independent generators after applyingthe similarity transformation that onverts the fTa; Xb; Yg into f eTa; fXb; eYg.Sine these are all SU(2N+1) generators, they are traeless hermitian matri-es. Moreover, I showed above that the eTa, fXb and eY are given by eqs. (27)and (29), where tTa = JtaJ and xTb = �JxbJ are 2N�2N hermitian matriesand y is a omplex 2N -dimensional vetor. However, in ontrast to fXb inthe last setion, xb is not traeless. Following the analysis at the end of the9



previous setion (but with Tr xb 6= 0), it follows that the number of inde-pendent real parameters that desribe eTa and fXb is given by N(2N +1) andN(2N � 1), respetively. Adding this to the 4N parameters that desribe eYyields a total number of SU(2N + 1) generators equal to (2N + 1)2 � 1 asexpeted.Finally, it is interesting to note that the generators of the type Y donot appear in the breaking of SU(2N) to Sp(2N) desribed in the previoussetion. This is easy to see by noting that in the previous setion, �y0�0 =jj2I2N implies that ��10 exists. Thus, in this ase �y0Y�0 = 0 would implythat Y = 0. In the ase of SU(2N + 1) breaking, sine �0 is an odd-dimensional antisymmetri matrix, it follows that det �0 = 0. Thus, ��10 doesnot exist and an non-trivial solution for Y an arise, as we have expliitlyshown above.5. Symmetry breaking of SO(2N) and SO(2N + 1) via aseond-rank antisymmetri tensorThe ase of spontaneous breaking of SO(2N) or SO(2N + 1) to U(N)via a salar �eld vauum expetation value for a seond-rank antisymmetritensor multiplet is very similar to the orresponding breaking of SU(2N) orSU(2N +1) onsidered in the previous two setions. Thus, we provide a fewdetails here. In the ase of SO(2N) the relevant theorem is as follows.Theorem: Suppose that �0 is a 2N � 2N real antisymmetri matrixthat satis�es �T0�0 = �0�T0 = 2I2N for some real number . Then, if thegenerators of SO(2N) in the de�ning (2N -dimensional) representation aregiven by fTa; Xbg, where the iTa and iXb are real antisymmetri 2N � 2Nmatries that satisfy: Ta�0 + �0T Ta = 0 ; (30)Xb�0 � �0XTb = 0 ; (31)then the Ta span an unbroken U(N) Lie subalgebra, while the Xb are thebroken generators that span an SO(2N)=U(N) homogeneous spae. Further-more, Tr (TaXb) = 0.Proof: First, I show that if �T0�0 = �0�T0 = 2I2N and Ta�0+�0T Ta = 0,then the Ta span an U(N) Lie subalgebra. Note that these two onditions10



imply: 2 T Ta = ��T0 Ta�0 : (32)For any even-dimensional real antisymmetri matrix M , there exists a realorthogonal matrix W suh that WMW T = diag(J1 ;J2 ; : : : ;Jn) is blokdiagonal, where eah blok is a 2�2 matrix of the form Jn � � 0 zn�zn 0 �, wherezn 2 R and the z2n are the eigenvalues of MMT (or MTM).5 Applying thisresult to �0, note that the eigenvalues of �0�T0 are all degenerate and equalto 2. Moreover, sine the matrix J [eq. (14)℄ satis�es JJT = I2N , it followsthat one an �nd real orthogonal matries W1 and W2 suh that W1�0W T1 =W2JW T2 = diag(J ; J ; : : : ; J ), where J is de�ned in eq. (15). That is,the fatorization of �0 and J both yield the same blok diagonal matrixonsisting of N idential 2� 2 bloks onsisting of J . Thus, there exists areal orthogonal matrix V = W�12 W1 suh that V �0V T =  J . The inverse ofthis result is V �T0 V T = � J (sine JT = �J). I now de�ne eTa � V TaV T .Then eq. (32) implies thateT Ta = �12 V �T0 V T eTaV �0V T = J eTaJ : (33)Likewise, one an use the same matrix V to de�ne fXb � V XbV T . By ananalogous omputation, 2XT = �T0X�0, whih implies that fXTb = �JfXbJ .Reall that that Ta and Xb are both antisymmetri 2N � 2N matries.Then, eTa � V TaV T and fXa � V XaV T are also antisymmetri. Hene, itfollows that eTa = �J eTaJ ; fXa = JfXaJ : (34)Using the expliit form for J , eq. (34) implies that Ta and Xb take thefollowing blok form:i eTa = � A B�B A � ; ifXb = �C DD �C � ; (35)where A, B, C and D are N � N real matries suh that A, C and Dare antisymmetri and B is symmetri. Thus, I have exhibited a similaritytransformation (note that V T = V �1) that transforms the basis of the Liealgebra spanned by the Ta to one that is spanned by the eTa. Moreover,onsider the isomorphism that maps i eTa given in eq. (35) to the N � N5This result for real antisymmetri matries is the analog of the orresponding fator-ization of omplex antisymmetri matries quoted in Setion 3.11



matrix A + iB. Sine (A + iB)y = (A � iB)T = �(A + iB), we see thatthe A+ iB are anti-hermitian generators (whih are not generally traeless)that span a U(N) subalgebra of the SO(2N). We an hek the number ofunbroken generators by ounting the number of degrees of freedom of one realantisymmetri and one real symmetri matrix: 12N(N�1)+ 12N(N+1) = N2,as expeted.Finally, I note that from 2 T Ta = ��T0 Ta�0 and 2XTb = �T0Xb�0 it fol-lows that 2 T Ta XTb = �T0 TaXb�0 (sine �T0�0 = 2I2N ). Taking the traeyields Tr TaXb = �Tr TaXb, or equivalently Tr TaXb = 0. To show that thefTa; Xbg span the full SO(2N) Lie algebra, we note that there are N2 unbro-ken generators and N(N � 1) broken generators (orresponding to the num-ber of parameters desribing two real antisymmetri matries [see eq. (35)℄).Thus, the total number of generators is N(2N � 1) whih mathes the totalnumber of SO(2N) generators.Finally, we turn to the ase of SO(2N + 1) breaking. In this ase, wewill make use of the fat that for any odd-dimensional real antisymmetrimatrix M , there exists a real orthogonal matrix W suh that WMW T =diag(J1 ;J2 ; : : : ;JN ; 0) where Jn � � 0 zn�zn 0 �, with zn 2 R and the z2n are theeigenvalues ofMMT (orMTM). The relevant theorem for ase of SO(2N+1)is as follows.Theorem: Suppose that �0 is a (2N +1)� (2N +1) real antisymmetrimatrix that satis�es �T0�0 = �0�T0 = 2 � I2N 00 0� ; (36)where  2 R. Then, if the generators of SO(2N+1) in the de�ning [(2N+1)-dimensional℄ representation are given by fTa; Xb; Yg, where the iTa, iXb andiY are real antisymmetri (2N + 1)� (2N + 1) matries that satisfy:Ta�0 + �0T Ta = 0 ; (37)Xb�0 � �0XTb = 0 ; (38)�T0 Y�0 = 0 ; (39)then the Ta span an unbroken U(N) Lie subalgebra, while the fXb; Yg arethe broken generators that span an SO(2N + 1)=U(N) homogeneous spae.Furthermore, Tr (TaXb) = Tr (TaY) = Tr (XbY) = 0.Proof: Here, I shall only sketh the modi�ations to the proof given inSetion 4. Again, we easily derive K eT Ta = � eTaK [where K is de�ned in12



eq. (24)℄. In the present ase, we use the fat that eTa is antisymmetri toonlude that K eTa = eTaK. That is, we may write the unbroken generators,eTa, in the form of eq. (27) where ta = �JtaJ and the ita are 2N � 2N realantisymmetri matries. Using the results previously obtained, it followsthat the eTa span a U(N) subalgebra. Likewise, the broken generators satisfy:KfXa = �fXaK and KT eYK = 0. The antisymmetry of fXa and eYa impliesifXb = �xb 00 0� ; i eY = � 0 y�yT 0 � ; (40)where xb is an 2N � 2N real antisymmetri matrix that satis�es xb = JxbJ ,and y is a real 2N -dimensional olumn vetor. From the expliit formsabove, it is easy to hek that Tr ( eTafXb) = Tr ( eTa eY) = Tr (fXb eY) = 0, whihimplies that Tr (TaXb) = Tr (TaY) = Tr (XbY) = 0.Finally, we ount the number of SO(2N + 1) generators f eTa; fXb; eYg.There are N2 unbroken generators and N(N + 1) degrees of freedom assoi-ated with fXb as in the ase of SO(2N) breaking. Finally, adding in the 2Nparameters that desribes eY yields a total number of SO(2N +1) generatorsequal to N(2N + 1) as expeted.Referenes[1℄ L.-F. Li, Phys. Rev. D9, 1723 (1974); V. Elias, S. Eliezer and A.R. Swift,Phys. Rev. D12, 3356 (1975); D. Wu, Nul. Phys. B199, 523 (1982) [E:B213, 545 (1983)℄.[2℄ R.A. Horn and C.R. Johnson, Matrix Analysis (Cambridge UniversityPress, Cambridge, England, 1990).[3℄ R.N. Mohapatra and P.B. Pal, Massive Neutrinos in Physis and Astro-physis, 2nd edition (World Sienti�, Singapore, 1998).[4℄ See problem 26 on p. 217 of ref. [2℄.[5℄ J.F. Cornwell, Group Theory in Physis, Volume 2 (Aademi Press, Lon-don, 1984)
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