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Molecular Symmetry

Representations of Molecular Point Groups
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Molecular Symmetry

Point Group- is a discrete finite symmetry group
whose operation keeps at least one point stays fixed.

Symmetry Group- Group of isomorphisms that map
an object onto itself (automorphisms)

Typical mappings include rotations, reflections, and
inversions.



Symmetry of H,O

O-v2

O-v1

G:={E, C,, o Oy}

Sl

Bent
Geometry

Determined
from VSPER

. Closure — C,0,,=0,,

0,10,,=C;
Identity— E
Inverse — each element is its
own inverse
Associativity — C,(o,,0,,)=E
(C,0,1)0,,=E




2 or more C_ axis
with n>2? Inversion

Inversion
Center?

Center?

Horizontal
Mirror Plane?

N

Vertical
Mirror Plane?

® @' =

Horizontal
I\/Iirror Plane?

Inversion
Center?

A Y

n dihedral
Mirror Plane?




Examples




Representations of

Molecular Point Groups

A representation is a group homomorphism ¢: G 2> GL(V,F).
Where V is a vector space and F is a field.

Construction of a representation requires first defining
your representation space



Matrix Representations of Group Operations
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Irreducible Representations of Group Elements
T

A linear representation, ®: G > GL(V,F), is irreducible if
the vectorspace, V, is non-zero and contains no invariant
subspaces under ¢.

Alternatively, if a representation is not block
diagonalizable using similarity transformations, then
the representation is irreducible

» To find irreducible representations, first find the irreducible
characters.



Schur Orthogonality Relations

i.e.) By selecting one matrix
()’ () —0 element from each matrix in
Z (9)mn (9)mn an irreducible representations
set of matrices we can form a
. vector that is the same

Z Lt (g)mnF(T) (9)mm =0 dimension as the order of the

g group and is orthogonal and
le] normalized by the dimension
of the irreducible
g representations




5 Rules for Irreps. and Characters

1. The sum of the squares of the dimensions of the irreps.

of a group is equal to the order of the group.

SN d2=di+d3+ ... = |G]

2. The sum of the squares of the characters in any irrep.

equals the order of the group.

>gxi(9))* =G|

3. The vectors whose components are the characters of

Character — Trace of a matrix y=TrA

two different irreps. are orthogonal.
>y Xi(9)x;(9) =0

4. In a given rep. the characters of all matrices belonging

to operations in the same class are identical.

5. The number of irreps. of a group is equal to the

number of classes in the group.



Irreducible Representations of C,,

The number of irreps. is equal
to the number of classes

G = {E7 CZ) Oul, U’UQ}

BN C2{0u1 J1ow2}

C.EC; ' =E
C2C,C5 1 = O,
C’20'L'1C’2_l = Oyl

-1
C2Uv202 = 02

onnEo ! = E
—1

lecQO’vl == CQ
—1

Ov10410,17 = Oyp1

-1
Ov10420,7 — Op2

The sum of the squares of the
dimensions of the irreps. of a group is
equal to the order of the group.

SR di+d2+d2 =4

di =dy =d3s =dy =1



Character Table of C,,

The trivial representation is always given

E C2v Opl1 Op2
r,l1 1 1 1

The following irreps. must follow character orthogonality

2o X1(9)x;i(9) =0Vj #1

E C2v Opl Op2
r,l1 1 1 1

I |1 1 -1 -1
I's {1 -1 1 -1
ry| 1 -1 -1 1




Character Table of C,, with Mulliken Symbols

E  Cy o0p1 0w
Ih—A; | 1 1 1 1
[h— Ay | 1 1 -1 -1
I's—B; | 1 -1 1 -1
'—-Bs | 1 -1 -1 1
A - 1-D, symmetric to Cn sub. 1 2 symmetricto O

B—> 1-D, anti-symmetryto C,  sub. 2 2anti- symmetricto O

See Appendix Il for details on notation.



Group Theory and
Quantum Mechanics




Invariance of the Hamiltonian

A symmetry operation on a molecule leaves the molecule
unchanged. This implies the Hamiltonian must also remain
unchanged under the symmetry operation.

R, #]=0

Eigenfunctions are bases for the irreducible
representation of the symmetry group




Wave Functions as Bases for Irreps.

Let W;1,W;o, ...V, be a set of orthonormal eigenfunctions.

G is a symmetry group and R € G.

Case 1: Eigenvalue is non-degenerate

HRVY;; = RHV;; = RE;7 V1 = E;jn RV,

= RV;; is an eigenfunction of H

Since W¥;; is normalized, then RW¥;; must also be normalized.
= RV, =1V,

Therefore, application of symmetry operation on V;;
produces a representation of the group where each matrix is £1

= Representations are irreducible.



Case 2: Eigenvalue is degenerate. Suppose degeneracy is k-fold.

HRY; = E;RVY,;
Since FE; is degenerate, any linear combination of its eigenfunctions
is also a solution to the wave equation with the same eigenvalue.
k
Let ‘I’,‘l - Zj:l \Ilij
Then application of a symmetry operation produces
k
RY;; = Zj:l 7'jt‘1’-;'j
Suppose S€ G acts on ¥
k
S‘I’z’j = Zm:l 3~mj‘I’im
Since S,R are elements in G, then there must exist an element T,
such that T = SR



T=SR

SRV =TV, = Z tmiWim = Sz r]l\I’t_) = z Z 5171]7'11‘1"1171

m=1 1=1m=1

k
=t = Zj:l SmjTjl

t11 S11 11
=1 . =

Therefore transformations of k-eigenfunctions corresponding to a

k-fold eigenvalue are a k-dimensional representation.



Are these representations irreducible?

Suppose not.

Then these representations can be reduced and (W;1, W2, ..., Vi)

the set of othornormal eigenfunctions with the same energy be

broken up into two subsets as follows

(U1, Wio, ooty Vi) — (W1, Win, oo, Vi) (Wimatsooes Wir)

Applying R, an irreducible representation of REG, to each of these subsets
RO (Wiy, Wig, oo, i) = YT 71 Wi

RO (W1, W) = S q 70 Vi

But these subsets of eigenfunctions when summed together could have different

eigenvalues. =<=(V;1, V;o, ..., ¥;;) being degenerate eigenfunctions.

Eigenfunctions are bases for the irreducible

representations of a molecule’s symmetry group




Eigenfunctions are bases for the irreducible

representations of a molecule’s symmetry group

Corollary: The dimension of the irreducible representations, n,
is equal to the degeneracy of an n-fold degenerate eigenvalue.

E C2v Ou1 02
A |1 1 1 1

As | 1 1 -1 -1
By |1 -1 1 -1
B | 1 -1 -1 1




Group Theory in
Vibrational Spectroscopy




Vibrational Transitions

Vibrational spectroscopy is a linear optical process. We can model the

R(l)(

Using the electric dipole approximation for the electric field, the time-

transition rate with Fermi’s Golden Rule

) =

z—h2E2| < ’prlﬁ,hﬂ[ > |2p(EF — E7 — ﬁw)

independent perturbing Hamiltonian is defined as:

1
Rip

(W) =

2h

= Eo| < vplilyr > [2p(Ep — Er — hw)




Vibrational Transitions

Vibrational spectroscopy is a linear optical process. We can
model the transition rate with Fermi’s Golden Rule

R{MW) = 55 Bol < Wer, Y|l Wer o1 > Pp(Bp — Er — hw)

2h

Where for an allowed transition the following must hold:

< \Ijel.iwvib.j|ﬂ|\Ijel.iwvib.p >7é 0



Allowed Transitions

Consider the case where the radiation is polarized in the z-
direction. Evaluation of the matrix element is as follows:

< \Del.iwvz’b.f ‘ﬂzlqjel.ﬂbvib.p >

=25

fdevzb F Q)(QJ - QjO)w'U’I:b-I (Q)

For a transition, there must be a change in the dipole w.r.t. the

bond length

&' 5 6.\'
3 6{ &'



Symmetry of the Operator

Symmetries will be the Bo
same as translations

2 I\ I\ s\ I\
VL H  H HH HH
jE 4 jcz Jov (x2) lov (v2)
y / /
(@) @)
x‘/ <7\ /\ 78\ /\ #
H H M H
Bl = A/ / /

+1 -1 +1 -1



Normal Modes as Bases of Irreps.

For polyatomic molecules, a natural choice of choice for the
bases are the normal modes of vibration.

N é
TSN

This simplifies the problem to a one-dimensional harmonic
oscillator, wherein the Hamiltonian is separable and the
wavefunction can be written as the following:

¢vib(Q17 Q27 Q?n ) — wvl(Q1)¢v2(Q2)¢v3(Q3)



Symmetry of Normal Modes

’Ul—)Al

E
1
v2 = Ay Ay |1 1 a1 4
v3 — B4 B, |1
1




Integrals of Product Functions
T

Integrand must be invariant to all symmetry operations for it to be non-zero.
Implying the product forms a basis containing the totally symmetric
representation, A;

* N
/ @bmb,l /j'w’v’ib.p dT 7é O
We know the functions form a basis for an irreducible representation

Ya —T'a

If the irreducible representation whose basis is the individual functions is known,
then the direct product of the irreducible representations can be used to determine

the symmetry of the integrand.

FAXFBXFMgAl



Active Vibrational Transitions

E Oy o0p1 0w
Ay | 1 1 1 1
Ay, | 1 -1 -1 1
By | 1 -1 1 -1
By | 1 1 -1 -1
%1 — Al
¢v2 — Al

77/)'03 — Bl

Vo = Ay X By x Ay = B,
Vo = A X B, x Ay = B,
VYo => A X A X A = A,

Vi Yo = By X By x A, = A,
Vo = By X B, X Ay = A,
U Yy = By x Ay X A; = B,

All modes are IR active




Absorbance

Infrared vibrations of
Water
L
& N\
H H
R £ 3 0
S Symmetric stretch H/ NH
N N ¥
kH/ \H Scissors bend
Asymmetric stretch
L F 4t b b b s B b B B bR E ANy
3500 3000 2500 2000 1500

Wavenumber




WATER H

INFRARED SPECTRUM

0.4

TRANSMITTANCE

0.2_-

2000 1000
Wavenumber (cm-1)

NIST Chemistry WebBook (http://webbook.nist.gov/chemistry)
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If the structure is known then the
symmetry is known and vice versa

Thank you.




Appendix [-Schonflies Notation

C), (cyclic) — object has n-fold rotation axis
— Chpr — plane of reflection perpendicular to axis of rotation

— Cpy — “n” mirror planes containing the axis of rotation

e D, (dihedral) — C,, and nCsy L to C),

— D, has a horizontal mirror plane and n vertical mirror planes containing the rotation axis

— D,q has n diagonal mirror planes

Ch; — object has a center of inversion

e S, —> improper rotation, i.e. rotation followed by a reflection (Note S1 = o, Sy =1

1,0, — icosahedral, octahedral, and tetrahedral



Appendix Il - Mulliken Symbols

A = one dimensional irrep. symmetric rotation about principle axis
B = one dimensional irrep. anti-symmetric rotation about principle axis.
E = 2-dimensional irrep.

T = 3-dimensional irrep.

Subscript 1 or 2 (on A and B) =

symmetric or antisymetric, respectively, to Cy L C,,, or if no (5 then
subscript w.r.t. o,.

Subscripts g or u =

applied to groups with a center of inversion. g (gerade) is symmetric,
u (ungerade) antisymetric w.r.t. center of inversion.

prime = symmetric w.r.t. reflection in horizontal plane

double prime = anti-symmetric w.r.t. reflection in horizontal plane



