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This essay addresses an application of Group Theory to the field of Condensed Matter Physics (CMP),
primarily to the subject of space groups, point groups, and Bloch’s Theorem.

Symmetric Groups of a Crystal
A crystal lattice is a periodic array of atoms which make up the crystal. Often due to the dimensions of the
crystal one applies the periodic boundary condition to the lattice since the number of atoms that make up
the crystal is on the order of Avagadro’s number 1023, the lattice can therefore by approximated as an infinite
lattice. Much of the physics that one derives from this approximation is in agreement with experiment when
measurements are carried out in the bulk of the material (away from the edges). Because of this periodicity
we consider the crystal to be invariant under the following translation,

r → T (l)r = r + l, (1)

where l is called the crystal lattice vector and is defined as,

l = a1l1 + a2l2 + a3l3, (2)

where l1, l2, l3 ∈ Z, and ai is a lattice basis vector. Multiplication of two translation’s T (li) ·T (lj) is defined
to be the sum of two crystal lattice vectors, li+lj . From this you can easily see the set of all translations T (l)
which preserve crystal invariance, forms an Abelian group T . This corresponds to a group of translations
in the crystal in which the environment of the lattice point r1 (after the translation) looks identical to the
environment of the lattice point r0 (before the translation).

In addition to the translational symmetry defined in Eq. 1, a crystal lattice may posses invariance under other
symmetric operations which are combinations of spatial inversion, translational, and rotational operations.
We will denote this second symmetric operator as g(R,α), which acts on r as follows,

r → g(R,α)r = Rr +α, where R ∈ O(3), (3)

and α is a translation which does not necessarily have to be a crystal lattice vector l. From Eq. 3 we see
that if α = 0 then g(R, 0) = R corresponding to a proper or improper rotation which preserves the origin r.
If on the other hand α 6= 0 and R = E (E being the 3× 3 identity matrix) then α must be a crystal lattice
vector in order for the crystal to be invariant under the operation defined in Eq. 3 with g(R,α) = g(E,α).
The multiplication of two symmetry operators g(R,α) is defined as follows,

g(R,α)g(R′,β)r = g(R,α){R′r + β}
= RR′r +α+Rβ

= (RR′)r + (α+Rβ),

from which we see that,
g(R,α)g(R′,β) = g(RR′,α+Rβ). (4)

The inverse of g(R,α) is defined as,

g(R,α)−1 = g(R−1,−R−1α). (5)



Where we can easily show that,

g(R,α)−1g(R,α)r = g(R−1,−R−1α)g(R,α)r
= g(R−1,−R−1α){Rr +α}
= R−1(Rr +α)−R−1α
= R−1Rr +R−1α−R−1α
= Er + 0

= r,

(6)

as we would expect. Therefore g(R,α)−1g(R,α) = g(E, 0).

One can easily check that the set of all symmetric operations g(R,α) equipped with the multiplication rule
defined in Eq. 4 defines a group, which we will denote as S and is called the space group. Also, the set of
rotations in g(R,α) which preserve the crystal invariance defines a group G called the point group.

There are many classification schemes for grouping space groups and point groups into classes which have
many uses in crystallography and solid state physics, the interested reader in this material is encouraged to
take a look at [2]. However, the goal here is not to dive deep in an application of group theory in CMP
but rather to get a taste of different ways in which group theory arises in CMP leading to Bloch’s theorem.
With this being said let’s keep on trucking and move on to to the group theory for Bloch’s theorem.

Bloch’s Theorem
Bloch’s theorem is an important theorem often taught in introductory solid state physics which states that
anytime you have a periodic potential, such as a the potential produced by atoms in a crystal lattice, you
will have electron eigenstates of the form,

ψ(r) = eik·ruk(r), (7)

which obey,
P̂{E|τ}ψ(r) = ψ(r +α) = eik·αψ(r).

P̂{E|τ} is the translation operator ∗, k is a reciprocal lattice vector and uk(r+α) = uk(r) is a function that
has the same periodicity as the crystal lattice.

In order to see where this came from we have to first understand reciprocal space ( also known as k-space).

Reciprocal lattice vectors
The set of wave vectors Km which yield plane waves with the same periodicity as the Bravais lattice defines
a reciprocal lattice (k-space). These reciprocal lattice vectors Km follow the following relation,

eKm·(r+ln) = eKm·r, ∀ r, ln, and Km, (8)

where again r is a point on the crystal lattice, ln is a lattice vector, and Km is a reciprocal lattice vector
satisfying,

eKm·ln = 1. (9)

Where,

ln =

3∑
i=1

niai, Km =

3∑
j=1

mibj , and bj · ai = 2πδij .

∗Here I have began to use the notation of [1].
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From this we can easily see that in general,

Km · ln = 2πN, N ∈ Z.

We now focus our attention to the translation operator P̂{E|τ} which is the operator of the elements of T ,
the translation subgroup which is a subgroup of S. This space group operator operator leaves the periodic
potential invariant,

P̂{R|τ}V (r) = V (r)

which is what we would expect. This property gives rise to the following result when, P̂{E|τ} acts on a wave
function,

P̂{E|τ}ψ(r) = ψ(r + τ ).

With all this being said we now go on to prove Bloch’s theorem.

Given that the translation group T is Abelian, the elements of T commute and the irreducible representations
are one-dimensional. We will use the periodic boundary condition in which,

{E|τ1 +NL1} = {E|τ1},

where N ∈ Z and L1 is the length of the crystal along the direction of a1. This gives rise to a one-dimensional
matrix representation of the the translation operator τi = niai, i = {1, 2, 3},

Dk1(n1a1) = eik1n1a1 = eik1τ1

since,
P̂Rψ(r) = Dk(R)ψk(r), (10)

where the R here denotes a symmetry element, k1 = 2πm1/L1 corresponding to the m-th irreducible repre-
sentation of the translation operator, and m1 = 1, 2, · · · , (L1/a1). So for each m1 there is a unique k1 such
that each irreducible representation if labeled by either m1 or k1 as indicated above. If now extend this
argument for the general translation operator tau then the matrix representation is,

Dk1(n1a1)D
k2(n2a2)D

k3(n3a3) = eik1n1a1eik2n2a2eik3n3a3 = eik·τ .

This allows us to extend our result from Eq. N to produce,

P̂{E|τ}ψ(r) = ψ(r)eik·τ = eik·τψ(r) = ψ(r + τ ),

yielding Bloch’s theorem.

Q.E.D
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