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Motivation: Finding a Nice Vector Algebra
● Many ways of representing vectors:

○ 2 dimensions: complex numbers, Gibbs vectors
○ 3 dimensions: quaternions, Gibbs vectors
○ 4 dimensions: Minkowski 4-vectors, gamma matrices
○ Spinors

● All have their strengths and weaknesses
● It would be nice to unify these!



Motivation: Shortcomings of Gibbs Vectors
● Need two multiplication operations
● Cannot divide vectors
● Can’t exponentiate vectors
● Doesn’t distinguish between polar and axial (pseudo-) vectors

○ Rotations (axial vectors) don’t “add” intuitively

● Transformation requires large ugly NxN matrices
● Have to be careful of gimbal lock (degeneracy in Euler rotation matrices)



Motivation: Quaternions
● Extension of complex numbers
● Has four components: q = a + b⋅i + c⋅j + d⋅k
● i⋅i = j⋅j = k⋅k = -1
● i⋅j = k, j⋅k = i, k⋅i = j
● j⋅i = -k, k⋅j = -i, i⋅k = -j



Motivation: Quaternion Example
● Any two rotations multiplied together gives a third rotation
● Vectors represented as 
● Rotations can be represented as quaternions with

● Perform rotations with v’ = qvq-1

● Simple example:
○ Rotate quarter turn about x-axis
○ Rotate quarter turn about z-axis
○ What is combined rotation?



Motivation: Quaternion Example



Motivation: Quaternion Discussion
● Pros vs. Gibbs vectors:

○ Rotation very elegant
○ Avoids gimbal lock
○ Less elements to each component
○ Division algebra; thus easy inverses

● Cons vs. Gibbs vectors:
○ Negative norm / dot product, so need to be careful to conjugate

■ This breaks symmetry
○ Difficult to extend to Minkowski space



Introducing Clifford Algebras
● Cℓ(ℝn) describes associative algebra in n-space
● Introduce {e1,e2, …, en}
● ei

2 = +1
● eiej = -ejei

○ (eiej)
2 = eiejeiej = -eiejejei = -1

○ This is known as a bivector



Recovering Complex Numbers from Cℓ(ℝ2) 
● Consider even components:

○ (a + xe1 + ye2 + be1e2) → (a + be1e2)

● Multiply two even-vectored elements:

● This forms subalgebra
● Isomorphic to complex numbers, with e1e2 → i



Application: Representing vectors in Cℓ(ℝ2)
● Numbers represented as a + xe1 + ye2 + be1e2

○ Scalar, vector, and bivector components

● Multiply two vectors:

● Intuition: view ei as basis i
● Intuition: view eiej as cross product of basis i and basis j



Application: Rotation by θ in ℝ2



Matrix reps of Cℓ(ℝ2)



Cℓ(ℝ3)

● Define j = e1e2e3
● Represent vector as vxe1 + vye2 + vze3



Application: Vectors and Rotations via Cℓ(ℝ3)
● Rearranging:

● Dot / cross product are just symmetric / anti-symmetric parts of product
● Represent rotations as
● Like quaternions / Cℓ(ℝ2): v’ = qvq-1



Last notes on Cℓ(ℝ3)

● Center is a + be1e2e3, isomorphic to compex numbers
● Even elements isomorphic to quaternions
● Center and even elements each form subalgebras



Application: Spacetime
● Represent events as
●

● Lorentz boosts: 
●

○ Can’t get this with quaternions because you need a positive square
○ Can’t get this with Gibbs vectors because you can’t exponentiate them
○ Instead, with Gibbs 4-vectors, need 4x4 boost matrices



Application: Electromagnetism



Application: Spinors
● Cℓ(ℝ3) isomorphic to 2x2 complex matrices
● Represent Pauli spin matrices as e1, e2, e3
● Split spinors as follows:

● <sz> = ψe3ψ, etc. Can calculate all 3 at once
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