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Gauge Theory Formalism

Consider a general gauge group G with a faithful representation given
by D(g) and a scalar field which transforms under the action of D(g)

ϕ→ D(g)ϕ (1)

A local gauge transformation is one for which g = g(x), which spoils
the previously covariant transformation of the kinetic term

∂μϕ→ D(g)∂μϕ+ ∂μD(g)ϕ (2)
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Gauge Theory Formalism (cont.)

To restore the covariance we introduce gauge fields and associate
them with matrices of the Lie algebra L(G)

Wμ =Wμ

aT
a ∈ L(G) (3)

Our newly covariant derivative is then given by

Dμ = ∂μ + ieWμ (4)
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Gauge Theory Formalism (cont.)

Where the gauge fields now transform in the following manner

Wμ → gWμg−1 +
i

e
(∂μg)g−1 (5)

Then gauge field tensor is then given by

Gμν = ∂μWν − ∂νWμ + ie[Wμ,Wν] (6)
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Gauge Theory Formalism (cont.)

By noting that

[Dμ,Dν]ϕ = ieD(g)Gμν (7)

The transformation of the gauge field tensor can be gleaned

Gμν → gGμνg−1 (8)
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Gauge Theory Formalism (cont.)

We then have

Gμν

a Ga
μν
=

1

k
Tr[GμνGμν] (9)

Which is clearly invariant under the action of the gauge group

1

k
Tr[GμνGμν] →

1

k
Tr[gGμνg−1gGμνg−1] →

1

k
Tr[GμνGμν] (10)
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The Higgs Vacuum

We now study a scalar field governed by the following Lagrangian

L = −
1

4
Ga
μν
Gaμν + (Dμϕ)†Dμϕ− V(ϕ) (11)

Where we assume V(ϕ) is symmetric under G. Additionally, we take
ϕ to satisfy the following equations at all points in space besides a
finite number of regions we call monopoles

V(ϕ) = 0 (12)

Dμϕ = 0 (13)
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The Higgs Vacuum (cont.)

We define the vacuum manifold as the set of all field configurations
which lie at the minimum of the potential

M0 = {ϕ | V(ϕ) = 0} (14)

Note that since V(ϕ) is invariant under the action of G...

V(D(g)ϕ) = 0→ D(g)ϕ ∈M0 (15)
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The Higgs Vacuum (cont.)

We consider a theory with a non-trivial vacuum manifold and whose
corresponding field configurations are related via a single orbit

This is equivalent to considering a scalar field with a non-vanishing
vacuum expectation value which we will call a Higgs field.
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Homotopy Groups

We consider a large region of spaceH in which the equations
governing the previously defined Higgs vacuum hold to a good
approximation.

A compact monopole regionM surrounded byH is enclosed
exactly once within a surface . Then, the field provides a continuous
mapping ϕ : → M0 (from physical space to the vacuum manifold).
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Homotopy Groups (cont.)

To allow for the movement and evolution ofM , must vary
continuously in time.

Thus, the mapping ϕ of the surface  at any given time must be
homotopic to itself at all other times.

ϕ(r, t1) ∼ ϕ(r, t2) (16)
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Homotopy Groups (cont.)

A homotopy is a continuous deformation between two mappings in
the same space. Let’s first consider a map between the real line
interval I = [0, 1] and a topological spaceX .

The paths γ0(t) and γ1(t) are said to be homotopic because there
exists a continuous deformation between them.
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Homotopy Groups (cont.)

This defines an equivalence class to which all paths that are
homotopic to a given path γ(t) belong. Paths can be combined
under the operation of path concatenation.

This provides a group operation for paths. Path concatenation (or
composition) combines two paths for which the terminal point of the
first path is the initial point of the second path.
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Homotopy Groups (cont.)

For example, if the path γ0(t) takes us from x0→ y0 and path γ1(t)
takes us from x1→ y1 then the concatenated path first takes us along
γ0 then along γ1. This defines our group operation as follows.

γ0γ1(t) =

⎧⎨⎩γ0(2t) for 0 ≤ t ≤ 0.5

γ1(2t− 1) for 0.5 ≤ t ≤ 1
(17)

Which is only defined for y0 = x1. The set of equivalence classes of
closed paths (or maps) about a basepoint x0 equipped with the
concatenation operation forms a topological group.
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Homotopy Groups (cont.)

We verify by checking the group axioms.

• The identity element sends the entire interval I to x0. It’s
concatenation with any other element yields the element itself.

• The inverse element for a given map γ(t) is simply γ(1− t).
This path sends us directly backwards along the original path.

• The group is closed since the concatenation of two loops with
the same basepoint x0 is itself a loop with basepoint x0.

• Concatenation is associative up to a path-homotopy due to the
previously defined parameterization.
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The Fundamental Group

The fundamental group with basepoint x0 in a topological space X is
denoted 1(X, x0). This group is a topological invariant which
records information about the shape and number of holes in a given
topological space.

The topological invariance of the fundamental group allows us to
classify topological spaces and their homeomorphisms. 17/39



Higher Order Groups

In general, the n-th homotopy group, n(X), is the group of maps
from the n-sphere, Sn, to the topological space X.

We will also use the zeroth class 0(X) which is the map between
two points and the space X. If the class is trivial, all points are
path-connected in X and we call the space connected.

However, to employ homotopy theory in the description of magnetic
monopoles, we also must be familiar with the properties of the little
group H of a vector ϕ0 ∈M0.
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The Little Group

The Little group of a point ϕ is defined as follows

Hϕ = {h ∈ G | D(h)ϕ = ϕ} (18)

If we associate a point ϕ with an element g ∈ G via ϕ = D(g)ϕ0, two
elements of G can only be associated with the same point if they
belong to the same right coset space of H in G.

D(g1)ϕ0 = D(g2)ϕ0→ D(g−11 g2)ϕ0 = ϕ0 (19)
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The Little Group (cont.)

Which requires

g−11 g2 ∈ Hϕ0 (20)

Points on the vacuum manifoldM0 are identified with an element of
the right coset space G/H. This means that given a gauge group G,
once H has been determined we can uncover the structure ofM0.

M0 ' G/H (21)
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The Little Group (cont.)

An important result in homotopy theory provides us the following

1(G/H) ' 0(H) (22)

2(G/H) ' 1(H) (23)

Since the map ϕ : →M0 defines an element of the homotopy
group 2(G/H), the second isomorphism provides a description of
the topological quantum numbers in terms of the fundamental
group of the little group, H.
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Applications

To relate the gauge fields of H to the topological quantum numbers,
we employ the second defining equation of the Higgs vacuum.

Dμϕ = 0 (24)

It is useful to parameterize the surface  as the unit square with its
perimeter all mapped to the same point ϕ(r0) = ϕ0

 = {r(s, t) | 0 ≤ s ≤ 1,0 ≤ t ≤ 1} (25)
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Applications (cont.)
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Applications (cont.)

Writing Dt =
dri
dt Di, the map ϕ is defined by

Dtϕ = 0 (26)

With the associated boundary condition ϕ(s,0) = ϕ0. Expanding out
the covariant derivative yields Schrodinger’s differential equation

∂ϕ

∂t
= ieD(Wi)ϕ

∂ri

∂t
(27)
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Applications (cont.)

This equation can be solved via a time evolution operator which is
written in terms of a time-ordered exponential

U(s, t) = T exp
[︂
ie

∫︁ t

0
Wi ∂r

i

∂t′
dt′

]︂
(28)

Then the solution to the differential equation in ϕ is given by

ϕ(s, t) = U(s, t)ϕ0 (29)

ϕ(s, t) = T exp
[︂
ie

∫︁ t

0
Wi ∂r

i

∂t′
dt′

]︂
ϕ0 (30)
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Applications (cont.)

The quantity U(s, 1) corresponding to a loop with s fixed is the
path-dependent phase factor for a closed loop

h(s) = U(s, 1) = T exp
[︂
ie

∫︁ 1

0
Wi ∂r

i

∂t′
dt′

]︂
→ 〈r0|U(t,0) |r0〉 (31)

It corresponds to a closed loop in the group Hϕ0 since the boundaries
of the unit square are mapped to the same point r0 and ϕ(r0) = ϕ0.

h(0) = h(1) = 1 (32)
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Applications (cont.)

This closed loop can be further related to the field strength tensor
Gμν via a non-Abelian Stokes’ theorem generalization [3]

h−1
dh

ds
= ie

∫︁ 1

0
g−1Gijg

∂ri

∂t

∂rj

∂s
dt (33)

Where the left-hand side of the above equation is an element of L(H)

h−1
dh

ds
= cata for ta ∈ L(H) (34)
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Applications (cont.)

For a U(1) gauge group the equation simplifies

h(s) = exp
[︂
ie

∫︁

B · dS

]︂
(35)

And we recognize the equation h(1) = 1 as Dirac’s famous
electromagnetic charge quantization condition

eg = 2nπ (36)
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Applications (cont.)

Perhaps a more interesting application is the quantization of
electromagnetic charges in the presence of a color gauge group, K,
under which the electric charge remains a color singlet state.

Since h−1 dhds is in the Lie algebra of H, we may write the following.

h−1
dh

ds
=

ie

a
α(s)ϕ+ iβa(s)Ka (37)

Where 1 and Ka are the generators of U(1) and K respectively and the
constant a is the length of ϕ in the vacuum manifoldM0.
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Applications (cont.)

The solution to the differential equation is given by

h(s) = k(s)exp
[︂
i
e

a
(s)

]︂
(38)

Where (s) is the magnetic flux through a surface spanning the loop
s for s = constant and k(s) ∈ K, the color gauge group. Setting
h(1) = 1 and (1) = g, the total magnetic charge enclosed within 

exp
[︀
igQ

]︀
= k ∈ K (39)
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Applications (cont.)

Since Q is a color singlet, k must commute with all of K and therefore
lives in the center of K, Z(K). Taking k ∈ SU(N), Schur’s lemma
requires that k take the following form

k = λIN for λ = exp[2πim/N] andm ∈ Z (40)

We now take |c〉 to be the particle representations of the color group
K which may be electromagnetically charged under the U(1) group

k |c〉 = exp
[︀
ig0Q

]︀
|c〉 = exp

[︀
2πim/N

]︀
|c〉 (41)
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Applications (cont.)

Which implies that the arguments of the exponentials must be equal

q =
2πm

Ng0
=

mq0
N

form ∈ Z (42)

In the relevant case of QCD with K = SU(3) and hence N = 3

q =
m

3
e = 0,±

1

3
e,±

2

3
e,±e, ... (43)
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Applications (cont.)

This is the generalization of the fractional charge of quarks to an
electromagnetic gauge group in the presence of a more general color
group SU(N). We’ve seen that for N = 3 we have the gauge group of
the strong interaction with the fractional quark charges in thirds of e.

The above result implies some connection between colored
magnetic monopoles and the fractional charges of quarks which has
been investigated in part by ’t Hooft [4] and Corrigan & Olive [5]
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Conclusion

• Group theory in combination with homotopy theory provide a
general topological treatment of monopoles in quantum theory
in terms of topological invariants

• The topological features can be encapsulated in the gauge fields
of H which carry the long-range characteristics of the monopole

• Quantization of electric charge in the presence of larger gauge
groups can be approached via topological features of magnetic
monopoles

• The general treatment allows for easy access to larger gauge
groups which may be of interest to grand unified theories
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