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Graded Lie Algebras

What is a graded algebra?

How do we construct a graded algebra?

It’s actually much easier than you think
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Introduction and Definitions Linear Vector Spaces

Linear Vector Spaces

i ~v0, ~v1, ~v2, · · · ∈ V

ii Field F

V is a linear vector space over the field F given the following
definitions:

Vector addition (+), Abelian operation such that
~vi + ~vj = ~vj + ~vi ∈ V
Scalar multiplication (·), c ∈ F,~v ∈ V → c · ~v ∈ V
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Introduction and Definitions Linear Algebras

Linear Algebra

A linear vector space V becomes a linear algebra g if we define the
vector product (×) such that

~vi × ~vj ∈ g Closure

~vk × (~vi + ~vj) = ~vk × ~vi + ~vk × ~vj Distributive Property

Other potential properties of the vector product

~vi × ~vj = ~vj × ~vi Commutativity

~vi × ~vj = −~vj × ~vi Anti-commutativity
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Introduction and Definitions Lie Algebras

Lie Algebra

A linear vector space g over a field F where we define the vector
product as a non-associative, alternating bilinear map g× g→ g
denoted by the Lie Bracket [., .] which obeys the Jacobi identity

[x, [y, z]] 6= [[x, y] , z] x, y, z ∈ g Non-Associative

[x, x] = 0 x ∈ g Alternating

[ax+ by, z] = a [x, z] + b [y, z] a, b ∈ F x, y, z ∈ g Bi-linearity

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 x, y, z ∈ g Jacobi Identity
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Introduction and Definitions Lie Algebras

Lie Algebra

Bi-linearity and Alternativity imply anti-commutativity

[x+ y, x+ y] = [x, x] + [y, x] + [x, y] + [y, y] = 0

[x, y] + [y, x] = 0

Any Lie group gives rise to a Lie algebra

Lie’s 3rd Theorem shows that any finite dimensional Lie algebra
over R or C corresponds uniquely to a connected Lie group up to
covering

The Lie algebra is often easier to deal with than the Lie Group, so
we can study the group through the associated algebra
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Graded Algebras Graded Lie Algebras

Graded Lie Algebra

A algebraic object X is said to be graded if it can be decomposed into
a direct sum of structures

X =
⊕
i∈I

Xi (1)

This object X is “I-graded”, where I is the index set of the grading or
gradation. Usually it is N, Z, or Zn, but in principal could be any
Abelian group
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Graded Algebras Graded Lie Algebras

Graded Lie Algebras

A graded Lie algebra is a Lie algebra g endowed with a grading that
respects the Lie bracket.

g =
⊕
i∈I

gi (2)

[gi, gj ] ⊆ gi+j (3)
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Graded Algebras Graded Lie Algebras

Graded Lie Algebra Example: sl (2,C)

a ∈ sl (2)

tr (a) = 0
(4)

We can write the generators in the Cartan-Weyl basis as X,Y,H

X =

(
0 1
0 0

)
Y =

(
0 0
1 0

)
H =

(
1 0
0 −1

) (5)
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)(
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)
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0 0
1 0

)(
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)
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Graded Algebras Graded Lie Algebras

Graded Lie Algebra Example: sl (2,C)

Let g−1 = span (X), g0 = span (H), g1 = span (Y )

We can then write sl (2) = g−1 ⊕ g0 ⊕ g1

[g−1, g1] ⊆ g0

[g0, g−1] ⊆ g−1

[g0, g1] ⊆ g1

(7)
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Graded Algebras Graded Lie Algebras

Graded Lie Algebra Example: su (3)

The Gell-Mann matrices are traceless Hermitian generators of su (3)

[λa, λb] = 2ifabcλc, where a, b, c = 1, 2, 3, . . . , 8 (8)

abc fabc abc fabc abc fabc
123 1 345 1

2 147 1
2

367 −1
2 156 −1

2 458
√

3
2

246 1
2 678

√
3

2 257 1
2

Table: Non-zero structure constants1 fabc of su (3)

1The fabc are antisymmetric under the permutation of any pair of indices.
J. F. Ulbricht Graded Lie Algebras and SUSY June 14, 2017 16 / 50



Graded Algebras Graded Lie Algebras

Graded Lie Algebra Example: su (3)

The Gell-Mann matrices are traceless Hermitian generators of su (3)

[λa, λb] = 2ifabcλc, where a, b, c = 1, 2, 3, . . . , 8 (8)

abc fabc abc fabc abc fabc
123 1 345 1

2 147 1
2

367 −1
2 156 −1

2 458
√

3
2

246 1
2 678

√
3

2 257 1
2

Table: Non-zero structure constants1 fabc of su (3)

1The fabc are antisymmetric under the permutation of any pair of indices.
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Graded Lie Algebra Example: su (3)

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 ,

λ3 =

 1 0 0
0 −1 0
0 0 0

 , λ4 =

 0 0 1
0 0 0
1 0 0

 ,

λ5 =

 0 0 −i
0 0 0
i 0 0

 , λ6 =

 0 0 0
0 0 1
0 1 0

 ,

λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 = 1√
3

 1 0 0
0 1 0
0 0 −2

 ,

(9)
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Graded Algebras Graded Lie Algebras

Graded Lie Algebra Example: su (3)

Defining

Ta ≡
1

2
λa(

F kl

)
ij

= δliδkj −
1

3
δklδij

the Gell-Mann matrices can be written in the Cartan-Weyl basis2

λ1 = F 2
1 + F 1

2 , λ2 = −i
(
F 2

1 − F 1
2

)
,

λ4 = F 3
1 + F 1

3 , λ5 = −i
(
F 3

1 − F 1
3

)
,

λ6 = F 3
2 + F 2

3 , λ7 = −i
(
F 3

2 − F 2
3

)
,

λ3 = F 1
1 − F 2

2 , λ8 = −
√

3F 3
3 =
√

3
(
F 1

1 + F 2
2

)
,

(10)

2The requires us to complexify the su (3) algebra to sl (3,C)
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Graded Lie Algebra Example: su (3)

[
T3, F

2
1

]
= F 2

1 ,

[
T3, F

1
2

]
= −F 1

2 ,[
T8, F

2
1

]
= 0,

[
T8, F

1
2

]
= 0,[

T3, F
3
1

]
= 1

2F
3
1 ,

[
T3, F

1
3

]
= −1

2F
1
3 ,[

T8, F
3
1

]
=
√

3
2 F

3
1 ,

[
T8, F

1
3

]
= −

√
3

2 F
1
3 ,[

T3, F
3
2

]
= −1

2F
3
2 ,

[
T3, F

2
3

]
= 1

2F
2
3 ,[

T8, F
3
2

]
=
√

3
2 F

3
2 ,

[
T8, F

2
3

]
= −

√
3

2 F
2
3 ,

(11)
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Graded Algebras Graded Lie Algebras

Graded Lie Algebra Example: su (3)

We can write the commutation relations from the previous slide in a
more convenient notation

[Ti, Fα] = αiFα (12)

Where i = 3, 8 and Fα =
{
F 2

1 , F
1
2 , F

3
1 , F

1
3 , F

3
2 , F

2
3

}
.

The root vectors αi are (excluding the 0 vectors)

(1, 0) , (−1, 0) ,
(

1
2 ,
√

3
2

)
,
(
−1

2 ,−
√

3
2

)
,
(
−1

2 ,
√

3
2

)
,
(

1
2 ,−

√
3

2

)
And we can identify the Cartan subalgebra [T3, T8] = 0
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Graded Algebras Graded Lie Algebras

Graded Lie Algebra Example: su (3)

We can now see how to decompose sl (3,C) into a graded Lie algebra.
We identify the subalgebras by the root vector (including the 0 vector)
associated with the subvector space.

g(0,0) = span (T3)⊕ span (T8) ,

Cartan Subalgebra

g(1,0) = span
(
F 2

1

)
, g(−1,0) = span

(
F 1

2

)
,

g( 1
2
,
√

3
2

) = span
(
F 3

1

)
, g(− 1

2
,−
√

3
2

) = span
(
F 1

3

)
,

g(− 1
2
,
√

3
2

) = span
(
F 3

2

)
, g( 1

2
,−
√

3
2

) = span
(
F 2

3

)
,

(13)
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Graded Algebras Graded Lie Algebras

Graded Lie Algebra Example: su (3)

Let ∆ be the set that contains the root vectors, e.g. (1, 0) ∈ ∆.

The gradation of g = sl (3,C)

g =
⊕
α∈∆

gα (14)

Respects the Lie bracket [gα, gβ] ⊆ gα+β

Just a couple to show off...

[
F 2

1 , F
3
2

]
= F 3

1 ,

[
g(1,0), g

(
− 1

2
,
√

3
2

)] ⊆ g( 1
2
,
√

3
2

) = span
(
F 3

1

)
[
F 2

1 , F
3
1

]
= 0,

[
g(1,0), g

(
1
2
,
√

3
2

)] ⊆ g( 3
2
,
√

3
2

) = 0

(15)
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F 3

1

)
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F 2

1 , F
3
1

]
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g(1,0), g

(
1
2
,
√

3
2

)] ⊆ g( 3
2
,
√

3
2
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Graded Algebras Graded Lie Algebras

Graded Lie Algebras

In fact, any semisimple Lie algebra can be graded by the roots spaces
of its adjoint representation.

So grading a Lie algebra is a pretty neat trick that will surely impress
even the most morose individual at the local pub, but what else is it
good for?

The Lie algebra is defined by the Lie bracket of its generators (vector
product), which is anti-commutative. In Supersymmetry (SUSY) we
introduce fermionic generators, which are defined using an extension of
the Lie bracket {., .} which is commutative.

In order to define a closed SUSY algebra we need to relax the
Alternativity of the Lie bracket, but we still want a subalgebra to be
defined with the regular Lie bracket ⇒ Graded Lie Algebra
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Supersymmetry Lie Superalgebras

Lie Superalgebras

In SUSY we want a space-time symmetry that connects bosonic states
|φ〉 to fermionic states |ψ〉

Q|ψ〉 ∝ |φ〉 Q|φ〉 ∝ |ψ〉

It is obvious from the above statement that the generators of the
symmetry must be spin-1

2 objects.

Introduce a Lie Superalgebra: A Z2 graded algebra g = g0 ⊕ g1 that
satisfies generalized Lie algebra axioms
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Supersymmetry Lie Superalgebras

Lie Superalgebras

g = g0 ⊕ g1

[x, y] = − (−1)|x||y| [y, x] Superskew Symmetry

(−1)|x||z| [x, [y, z]] + (−1)|y||x| [y, [z, x]] + (−1)|z||y| [z, [x, y]] = 0
Super Jacobi Identity

Where x ∈ g0 or x ∈ g1 and y ∈ g0 or y ∈ g1 etc...

And |x|, |y|, |z| ∈ {0, 1} is called the degree of x (even or odd)
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Supersymmetry Lie Superalgebras

Lie Superalgebras

The Super Jacobi Identity on the previous slide can be written in a
more compact form

{x, {y, z]]± {y, {z, x]]± {z, {x, y]] = 0 (16)

Where the brackets {, ] are either commutators or anticommutators
depending on the degree of x,y, and z. The signs are determined by
the odd elements. If the odd elements are in a cyclic permutation of
the first term, the sign is positive; it not, it is negative.
If x ∈ g0, |x| = 0. g0 is an ordinary Lie algebra, and its elements are
even.
If x ∈ g1, |x| = 1. g1 is a linear representation of g0 and there exists a
symmetric g0-equivariant linear map {., .} : g1 × g1 → g0
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Supersymmetry Superspace

Superspace

Space time coordinates xµ are bosonic, i.e. they commute

[xµ, xν ] ≡ xµxν − xνxµ = 0 (17)

Introduce new fermionic coordinates θα, θ̄α̇ that anticommute{
θα, θβ

}
=
{
θ̄α̇, θ̄β̇

}
=
{
θα, θ̄β̇

}
= 0 (18)

α, α̇ ∈ {1, 2}

Fermionic coordinates also commute with bosonic coordinates

[xµ, θα] =
[
xµ, θ̄α̇

]
= 0 (19)
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Supersymmetry Superspace

Superspace

Anticommutation of Grassman-valued coordinates θα, θ̄α̇ gives us
a convenient property

θαθβ = −θβθα

θ̄α̇θ̄β̇ = −θ̄β̇ θ̄α̇

⇒ (θα)2 =
(
θ̄α̇
)2

= 0

(20)

This allows us to expand any function f of a Grassman variable θ
as a Taylor series that terminates after linear terms in θ

f (θ) = a+ θb (21)
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Supersymmetry Superspace

Superspace

We also define the invariant antisymmetric matrices εαβ and εα̇β̇

that raise and lower spinor indices

θα = εαβθ
β

θ̄α̇ = εα̇β̇ θ̄β̇
(22)

For the remainder of this presentation I will work with the metric
η = diag (−1, 1, 1, 1)

We will also need to pick a basis for our σ matrices.

σ0 =

(
−1 0
0 −1

)
σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
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Supersymmetry Superspace

Superspace

Spinors transform under Lorentz transformations as

ψ′α = M β
α ψβ ψ̄′α̇ = M∗ β̇

α̇ ψ̄β̇

ψ′α = M−1 α
β ψβ ψ̄′α̇ = (M∗)−1 α̇

β̇
ψ̄β̇

This implies that the Pauli matrices must have mixed spinor indices
(one dotted and one undotted) σµαα̇, µ = 0, 1, 2, 3

The conjugate four-vector for the Pauli matrices is constructed using
the ε-tensor

σ̄µα̇α = εα̇β̇εαβσµ
ββ̇

And the familiar Dirac γ-matrices in the Weyl-basis

γµ =

(
0 σµ

σ̄µ 0

)
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Supersymmetry Supersymmetry Algebras

Supersymmetry Algebras

[Pµ, P ν ] = 0

[Mµν , Pρ] = iηνρPµ − iηµρPν
[Mµν ,Mρσ] = iηµσMνρ − iηµρMνσ − iηνσMµρ + iηνρMµσ[
Pµ, Q

L
α

]
=
[
Pµ, Q̄α̇L

]
= 0[

Mµν , Q
L
α

]
=

1

2
σ β
µνα Q L

β[
Mµν , Q̄α̇L

]
=

1

2
σ̄ β̇
µνα̇Q̄β̇L{

Q L
α , Q̄α̇M

}
= 2σ µ

αα̇ Pµδ
L
M{

Q L
α , Q M

β

}
= εαβX

LM{
Q̄α̇L, Q̄β̇M

}
= εα̇β̇X

†
LM

(23)
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Representations of Supersymmetry Algebras Boson and Fermion Number

SUSY Representations

Of particular interest to us are the anticommutation relations{
Q L
α , Q̄α̇M

}
= 2σ µ

αα̇ Pµδ
L
M{

Q L
α , Q M

β

}
= 0{

Q̄α̇L, Q̄β̇M

}
= 0

(24)

We introduce the fermion number operator NF so that (−1)NF takes
the value +1 for bosonic states and −1 for fermionic states.

From the definition of the supersymmetry generators

(−1)NF Qα = −Qα (−1)NF (25)

J. F. Ulbricht Graded Lie Algebras and SUSY June 14, 2017 32 / 50



Representations of Supersymmetry Algebras Boson and Fermion Number

SUSY Representations

Of particular interest to us are the anticommutation relations{
Q L
α , Q̄α̇M

}
= 2σ µ

αα̇ Pµδ
L
M{

Q L
α , Q M

β

}
= 0{

Q̄α̇L, Q̄β̇M

}
= 0

(24)

We introduce the fermion number operator NF so that (−1)NF takes
the value +1 for bosonic states and −1 for fermionic states.

From the definition of the supersymmetry generators

(−1)NF Qα = −Qα (−1)NF (25)

J. F. Ulbricht Graded Lie Algebras and SUSY June 14, 2017 32 / 50



Representations of Supersymmetry Algebras Boson and Fermion Number

SUSY Representations

Of particular interest to us are the anticommutation relations{
Q L
α , Q̄α̇M

}
= 2σ µ

αα̇ Pµδ
L
M{

Q L
α , Q M

β

}
= 0{

Q̄α̇L, Q̄β̇M

}
= 0

(24)

We introduce the fermion number operator NF so that (−1)NF takes
the value +1 for bosonic states and −1 for fermionic states.

From the definition of the supersymmetry generators

(−1)NF Qα = −Qα (−1)NF (25)

J. F. Ulbricht Graded Lie Algebras and SUSY June 14, 2017 32 / 50



Representations of Supersymmetry Algebras Boson and Fermion Number

SUSY Representations

For a finite dimensional representation3 we can take the trace of the

operator (−1)NF

{
Q A
α , Q̄β̇B

}
Tr
[
(−1)NF

{
Q A
α , Q̄β̇B

}]
= Tr

[
(−1)NF

(
Q A
α Q̄β̇B + Q̄β̇BQ

A
α

)]
= Tr

[
(−1)NF Q A

α Q̄β̇B

]
+ Tr

[
(−1)NF Q̄β̇BQ

A
α

]
= −Tr

[
Q A
α (−1)NF Q̄β̇B

]
+ Tr

[
Q A
α (−1)NF Q̄β̇B

]
= 0

(26)

3The trace is undefined for infinite dimensional representations
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SUSY Representations

Using the anticommutation relations of the Q, Q̄ we can also show

Tr
[
(−1)NF

{
Q A
α , Q̄β̇B

}]
= 2σ µ

αβ̇
δABTr

[
(−1)NF Pµ

]
= 0

(27)

For fixed non-zero momentum this requires

Tr
[
(−1)NF

]
= 0 (28)

⇒ Representations of supersymmetry must contain an equal number of
bosonic and fermionic states.
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Representations of Supersymmetry Algebras Constructing Massive Representations

Raising and Lowering Operators

Boost to the rest frame such that for a massive, one-particle state
Pµ = (−M, 0, 0, 0)

The SUSY algebra in this frame takes the form

{
Q A
α , Q̄β̇B

}
= 2Mδαβ̇δ

A
B{

Q A
α , Q B

β

}
=
{
Q̄α̇A, Q̄β̇B

}
= 0

(29)

The indices A and B run from 1 to N , where N is the number of
supersymmetries.
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Constructing Massive Representations

We can rescale the SUSY generators

a A
α ≡ 1√

2M
Q A
α(

a A
α

)† ≡ 1√
2M

Q̄α̇A

(30)

These operators obey the following anticommutation relations in the
rest frame

{
a A
α ,
(
a B
α

)†}
= δ β

α δAB{
a A
α , a B

β

}
=

{(
a A
α

)†
,
(
a B
β

)†}
= 0

(31)
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Constructing Massive Representations

We now recognize the algebra of Q A
α and Q̄β̇B as being isomorphic to

the algebra of 2N fermionic creation and annihilation operators a A
α

and
(
a B
α

)†

The representations can therefore be built up from the Clifford
“vacuum” Ω as they normally are in ordinary quantum field theories.

Define the vacuum Ω through the condition a A
α Ω = 0

And build up states through successive application of the creation

operator
(
a A
α

)†
Ω

(n)α1α2...αn

A1A2...An
=

1√
n!

(
a A1
α1

)† (
a A2
α2

)†
...
(
a An
αn

)†
Ω (32)
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Constructing Massive Representations

Because the
(
a A
α

)†
anticommute, Ω

(n)α1α2...αn

A1A2...An
must be

antisymmetric under the exchange of a pair of indices αiAi ↔ αjAj .

The α’s take values from 1 to 2, and the A’s take values from 1 to N ,
there are therefore 2N unique values for each pair of indices αA. We
cannot construct a totally antisymmetric tensor if n > 2N . As an
example let N = 1, the state

Ω121
111 = −Ω121

111 (33)

Having switched the first and third pair of indices, implies Ω121
111 = 0
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Constructing Massive Representations

For any n there are 2N !
n!(2N−n)! different states. Summing over all n gives

the size of the representation

d =
2N∑
n=0

(
2N
n

)
= 22N (34)

Therefore fundamental irreducible massive multiplet Ωα1α2...α2N
A1A2...A2N

has

dimension 22N and contains 22N−1 fermionic states and 22N−1 bosonic
states.

The highest spin state comes from symmetrizing as many spin indices
as possible while antisymmetrizing in the other index. This leads to a
maximum spin of N

2
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N = 1 Massive Supersymmetry Representations

For N = 1 the fundamental representation is of dimension 4, and
consists of the massive, one-particle states

Ω

(aα)†Ω

1√
2

(aα)† (aβ)†Ω = − 1√
2
εαβ (aγ)† (aγ)†Ω

(35)

There are two states with spin 0 and one state of spin-1
2 .
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Massive Supersymmetry Representations

Spin Ω0 Ω 1
2

Ω1 Ω 3
2

0 2 1
1
2 1 2 1
1 1 2 1
3
2 1 2
2 1

Table: N = 1 Massive
Supersymmetry representations

Spin Ω0 Ω 1
2

Ω1

0 5 4 1
1
2 4 6 4
1 1 4 6
3
2 1 4
2 1

Table: N = 2 Massive
Supersymmetry representations
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Massive Supersymmetry Representations

Spin Ω0 Ω 1
2

0 14 14
1
2 14 20
1 6 15
3
2 1 6
2 1

Table: N = 3 Massive
Supersymmetry representations

Spin Ω0

0 42
1
2 48
1 27
3
2 8
2 1

Table: N = 4 Massive
Supersymmetry representations
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Massless Supersymmetry Representations

To construct the massless representations (P 2 = 0) we first boost to a
fixed light-like reference frame Pµ = (−E, 0, 0, E)

The SUSY algebra in this frame takes the form

{
Q A
α , Q̄β̇B

}
=

(
4E 0
0 0

)
δAB{

Q A
α , Q B

β

}
=
{
Q̄α̇A, Q̄β̇B

}
= 0

(36)

Once again, rescaling the Q and Q̄

aA ≡ 1

2
√
E
Q A

1

a†A ≡
1

2
√
E
Q̄ A

1̇
=
(
aA
)† (37)
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Massless Supersymmetry Representations

The algebra in this frame consists of N creation and annihilation
operators, a†A and aA which obey the anticommutation relations

{
aA, a†B

}
= δAB{

aA, aB
}

=
{
a†A, a

†
B

}
= 0

(38)

Because Q A
2 and Q̄2̇A totally anticommute they must be identically 0.

We therefore lose the spinor index, and the representations are
antisymmetric in only the A and B indices. The aA operator
annihilates the state of lowest helicity λ

aAΩλ = 0 (39)
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Massless Supersymmetry Representations

The states are built in the same way as in the massive case, by
successive application of the creation operator a†A on the Clifford
vacuum Ωλ

Ω
(n)

λ+n
2
,A1A2...An

=
1√
n!
a†An

a†An−1
...a†A1

Ωλ (40)

Because we now lack a spinor index to differentiate between states we
have 2N states with a N !

n!(N−n)! degeneracy.

The antisymmetry in the A index requires the highest helicity to be
λ = λ+ N

2
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Massless Supersymmetry Representations

λ
hel. −2 −3

2 −1 −1
2 0 1

2 1 3
2

2 1
3
2 1 1
1 1 1
1
2 1 1
0 1 1
−1

2 1 1
−1 1 1
−3

2 1 1
−2 1

Table: N = 1 Massless Supersymmetry representations

J. F. Ulbricht Graded Lie Algebras and SUSY June 14, 2017 46 / 50



Representations of Supersymmetry Algebras Constructing Massless Representations

Massless Supersymmetry Representations

λ
hel. −2 −3

2 −1 −1
2 0 1

2 1

2 1
3
2 1 2
1 1 2 1
1
2 1 2 1
0 1 2 1
−1

2 1 2 1
−1 1 2 1
−3

2 2 1
−2 1

Table: N = 2 Massless Supersymmetry representations
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Massless Supersymmetry Representations

λ
hel. −2 −3

2 −1 −1
2 0 1

2

2 1
3
2 1 3
1 1 3 3
1
2 1 3 3 1
0 1 3 3 1
−1

2 1 3 3 1
−1 3 3 1
−3

2 3 1
−2 1

Table: N = 3 Massless Supersymmetry representations
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Massless Supersymmetry Representations

λ
hel. −2 −3

2 −1 −1
2 0

2 1
3
2 1 4
1 1 4 6
1
2 1 4 6 4
0 1 4 6 4 1
−1

2 4 6 4 1
−1 6 4 1
−3

2 4 1
−2 1

Table: N = 4 Massless Supersymmetry representations
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