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g Conditions on A € G L Conditions on a € £ n
GL(N, C) - gl(N, ) N 2N?2
GL(N,R) A real gl(N,R) a real N?
SL(N, C) detA =1 si(N, €) tra=0 2N2 -2

A real, a real, 2 _
SL(N, R) { A real, | sI(N,R) { areal, N2 -1
U(N) At =A"1 u(N) al = —a N?
At = A1, at = —a, 2
SU(N) { detA =1 su(N) { tra=0 N=-1
U(p, q) A‘1g = gA“1 u(p, q) a*tg = -ga N?
Alg=gA™", a'lg = —ga, 2 _
SU(p, q) { det A = su(p, q) tra—0 N2 -1
O(N,C) A=A"! so(N, C) a=-a N2 - N
A=A"1 - 2
’ =- N2-N
SO(N,C) { det A — 1 so(N, C) a a
A=A"1, a=-a, 12
O(N) { A real so(N) { a real 3(N*-N)
A=A"1, -
SO(N) A real so(N) a=—a, L(N2=N)
det A T a real 2
Ag=gA~l, ag = —ga, (N2
owa | { A% so(p,q) B~ L(N2-N)
Ag= -
%1 gA, ag = —ga, 1(N2
SO(p, q) A~! real, so(p, q) ) 3(N2—=N)
detA =1 area

* A = A_la * a= —a, 1 2 _

SO*(N) AtJA =1 so*(N) { atd = —Ja 3(N°=N)
Sp(%,C) AJA=1J sp(X, ) aJ = -Ja N2+ N
N AJA =1, N aJ = -Ja, 1(N2
Sp(7,R) { A real sp(7,R) { areal z(N*+N)
N AJA = J, N aJ = _Ja» 1 2
sp(¥) { R =3 | {315 LN2+N)
AJA =3, aJ = —Ja, 1/ n2
Sp(r, ) { noate | wee | {Hele. | ierem
JA* = AJ Ja* = aJ
* ) * ’ 2 _
SU*(N) { detA =1 su*(N) { tra=0 N"=1

Table 8.1: The real Lie algebras £ of some important linear Lie groups G.
A and a are N x N matrices, which are complex unless otherwise stated; g
is an N x N diagonal matrix with p diagonal elements +1 and q (= N — p)
diagonal elements —1, p > g > 1. In the last six entries N is even, and J and
G are the N x N matrices defined in Equations (8.35) and (8.36).

In the above table, A is an invertible matrix, whereas no such condition is
imposed on the matrix a. In addition, the transpose of a matrix is denoted by
placing a tilde above the corresponding symbol, the matrix adjoint is denoted
by a dagger, and the complex conjugate of the matrix is denoted by a star.
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Table 8.1 lists the details of the real Lie algebras belonging to a number
of important linear Lie groups that can be obtained this way. In Table 8.1 J
and G are the N x N matrices defined by

0 ]-N/Z]
J= s 8.35
['1N/2 0 (8:35)
and
-1, 0 0 0
1 o 1, o o
G=| o ¢ -1 o | (8.36)
0 0 0 1

w

where 1 <r < %Nands:—é—N—r.
That the exponential mapping remains invaluable even for non-compact
linear Lie groups is demonstrated by the following theorem.

Theorem VIII Every element of the connected subgroup of any linear Lie
group G can be expressed as a finite product of exponentials of its real Lie
algebra L.

Proof See, for example, Appendix E, Section 2, of Cornwell (1984).

These results may be summarized by the statement that the matrix ex-
ponential function always provides a mapping of £ into G. This is onto if G
connected and compact, and even when G is connected but non-compact every
element of G is expressible as a finite product of exponentials of members of
L.

These two pages are taken from J.F. Cornwell, "Group Theory in Physics: An
Introduction,” (Academic Press, San Diego, CA, 1997).





