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g 

GL(N,<C) 
GL(N,IR) 
SL(N, <C) 

SL(N,IR) 

U(N) 

SU(N) 

V(p,q) 

SU(p, q) 

O(N, <C) 

SO(N, <C) 

O(N) 

SO(N) 

O(p,q) 

SO(p, q) 

SO*(N) 

Sp(�' <C) 

Sp(�,IR) 

Sp(�) 

Sp(r, s) 

SU*(N) 

Conditions on A E g 

A real 
detA = 1 

{ 
A real, 
detA = 1 

At= A-1 

{At=A-1, 
detA = 1 

Atg=gA-1 
{ Atg=gA-1, 

detA = 1 
A=A-1 

{ A=A-1, 
detA = 1 

{ A=A-1, 
A real 

{ 
A=A-1, 
A real, 
detA = 1 

{ Ag= gA-1, 
A real 

! 

Ag=gA, 
A-1 real, 
detA = 1
A=A-1, 
At JA =J 
AJA=J 

{ AJA= J, 
A real 

{ 
AJA=J, 
At= A-1 

{ 
AJA= J, 
AtGA = G 

{ JA*=AJ, 
detA = 1 

£, 

gl(N, <C) 
gl(N,IR) 
sl(N, <C) 

sl(N,IR) 

u(N) 

su(N) 

u(p, q) 

su(p, q) 

so(N, <C) 

so(N, <C) 

so(N) 

so(N) 

so(p, q) 

so(p, q) 

so*(N) 

sp( f' (C) 

sp( f, IR) 

sp(�) 

sp(r,s) 

su*(N) 

GROUP THEORY IN PHYSICS 

Conditions on a E £, 

a real 
tr a = 0 

{ 
a real, 
tr a = 0 

at= -a

{ at=-a, 
tr a = 0 

atg = -ga 
{ atg = -ga,

tr a = 0 
ii= - a 

ii= -a 

{ 
: :a�

a, 

{ ! :a�
a, 

{ iig = -ga,
a real 

{ iig = -ga,
a real 

{ a= -a,
at J = -Ja
iiJ = -Ja 

{ iiJ = -Ja,
a real 

{ 
iiJ = -Ja,
at = -a

{ iiJ = -Ja,
atG = -Ga 

{ Ja* = aJ, 
tr a = 0 

n 

2N2 

N2 
2N2 -2 

N2 -1 

N2 

N2 -1 

N2 

N2 -1 

N2 -N

N2 -N

!(N2 -N) 

!(N2 -N) 

!(N2 -N) 

!(N2 - N) 

N2 +N 

!(N2 + N) 

!(N2 
+ N) 

N2 -1 

Table 8.1: The real Lie algebras £ of some important linear Lie groups Q. 
A and a are N x N matrices, which are complex unless otherwise stated; g 
is an N x N diagonal matrix with p diagonal elements + 1 and q ( = N - p) 
diagonal elements -1, p � q � l. In the last six entries N is even, and J and 
G are the N x N matrices defined in Equations (8.35) and (8.36). 

In the above table, A is an invertible matrix, whereas no such condition is 

imposed on the matrix a.  In addition, the transpose of a matrix is denoted by 

placing a tilde above the corresponding symbol, the matrix adjoint is denoted 

by a dagger, and the complex conjugate of the matrix is denoted by a star.
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Table 8.1 lists the details of the real Lie algebras belonging to a number 
of important linear Lie groups that  can be obtained this way. In Table 8.1 J 
and G are the N • N matrices defined by 

0 1N/2 I (8.35) 
] = - - 1 N / 2  0 ' 

and 
- - l r  0 0 0 

G = 0 Is 0 0 (8.36) 
0 0 - l r  0 ' 
0 0 0 1~ 

1N and s = 1 where 1 _ r _< ~ ~ N - r .  
That  the exponential mapping remains invaluable even for non-compact 

linear Lie groups is demonstrated by the following theorem. 

T h e o r e m  V I I I  Every element of the connected subgroup of any linear Lie 
group G can be expressed as a finite product of exponentials of its real Lie 
algebra s 

Proof See, for example, Appendix E, Section 2, of Cornwell (1984). 

These results may be summarized by the statement that  the matrix ex- 
ponential function always provides a mapping of s into ~. This is onto if G 
connected and compact, and even when ~ is connected but non-compact every 
element of G is expressible as a finite product of exponentials of members of 
s 

These two pages are taken from J.F. Cornwell, "Group Theory in Physics: An 
Introduction," (Academic Press, San Diego, CA, 1997).




