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Part I: Introduction
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Motivation

o Many quantum field theories exhibit symmetry breaking patterns
from a group G to a subgroup H.

o When a symmetry group is broken down to subgroup, the
observable degrees of freedom (DOF) will change.

o By Goldstone’s theorem, we while find Ng — N3y Goldstone boson
after symmetry breaking.

o In order to describe the observable DOF, a general method for
constructing Lagrangians made out of Goldstone bosons is needed.

o The Coleman-Callan-Wess-Zumino (CCWZ) Construction
provides a systematic way to describe low-energy DOF.
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Chiral Symmetry Breaking

I'm an electron!

I'm an anti-positron!
and | have a mustache.

b)

b)
charge -1

/

charge -1
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Chiral Symmetry Breaking

o In the Standard Model (SM) the QCD Lagrangian for light quarks
is

EQCDZ*i Tr(Guw GH)+i (q;EH D“qRJrqEEH D“qL) +mass terms
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Chiral Symmetry Breaking

o In the Standard Model (SM) the QCD Lagrangian for light quarks
is

Locp=— i Tr( G*Y)+i (q}%EH D”‘q,g—l—qu# D#qy, ) +mass terms

UR ur, UR,r
qr — dR qr, — dL where UR = | UR,g
SR SL UR,b

R, L refer to right and left-handed particles

e
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Chiral Symmetry Breaking

o In the Standard Model (SM) the QCD Lagrangian for light quarks
is

EQCDZ*i Tr( GH*Y)+i (q;EH D“qRJrqEEH D“qL) +mass terms

UR ur, UR,r
qr = dR qr, = dL where UR = | UR,g
SR SL UR,b

R, L refer to right and left-handed particles

u, d, s stand for the up, down and strange quark
= 0 AL — O, Ay, — gfe Al A

A, gauge fields (gluons)
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Chiral Symmetry Breaking

o In the Standard Model (SM) the QCD Lagrangian for light quarks
is

EQCDZ*i Tr(Guv GH)+i (q;EMD“qRJrqEEHD“qL) +mass terms

u u UR,r
R R

. UR,g

D/,,qR = 8M dR — ZgAflTa dR URb

SR SR ’

D,, is the covariant derivative,
7, are the generators of SU(3) which act on triplets ug, etc.,

and Af, are the gauge-fields (gluons)
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Chiral Symmetry Breaking

o In the Standard Model (SM) the QCD Lagrangian for light quarks
is

LQCDZ*i Tr(Guv GH)+i (q}%&l, D"qRJrqul, D"qL) +mass terms

Ou = (]12X27U) E,u, = (]12><27 _U)
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Chiral Symmetry Breaking

o In the Standard Model (SM) the QCD Lagrangian for light quarks
is

[:QCDZ*% Tr(Guv GH)+i (q;r{?“ D“qRJrqEEH D“qL) +mass terms

o QCD Lagrangian exhibits a global chiral symmetry:
G =SU(3) ® SU(3)R in the chiral (massless) limit:

UR UR
qL%eXp(igiTa)(IL ar=| dpr %eXP(iQ%T"') dr
SR SR
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Chiral Symmetry Breaking

o In the Standard Model (SM) the QCD Lagrangian for light quarks
is

EQCDZ*i Tr(Guw G*)+i (q;E# D# qRJrquH D“qL) +mass terms

o QCD Lagrangian exhibits a global chiral symmetry:
G =SU(3)r, ® SU(3) R in the chiral (massless) limit:

qR%exp(iG%{‘ra)qR qL%eXp(iQZTa)qL

) t b ) b
n a _ipQ
7. Drgr— (PR a.DH (PR = ¢l.e R7a5, DrePRTD
IRt dr 4drR Ik 4dr dr I qrR
-pa -2
1 EMD“eﬂeRTa YR qRr

:qR

= ‘I}L{EMDHQR
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Chiral Symmetry Breaking

o In the Standard Model (SM) the QCD Lagrangian for light quarks
is

LQCD:—i Tr(Guw GH )+ (qLEHD”qR+q£EHD”qL) +mass terms

o QCD Lagrangian exhibits a global chiral symmetry:
G =SU(3)r ® SU(3)R in the chiral (massless) limit:

qr—exp (03 7a )ar qr—exp(i0%7a )qr

o G is broken down to the subgroup H = SU(3)y (6, = 03) due to
quark condensate: (€| gq|Q2) # 0 below confinement scale Aqcp.
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Chiral Symmetry Breaking

o G is broken down to the subgroup H = SU(3)y (6, = 03) due to
quark condensate: (€| gq|2) # 0 below confinement scale Aqcp.

0 # (2] g | = (Q ghar + b ar Q)

Since (Q| gq |2) is invariant under SU(3)y (6, = 65) but not under
SU(3)a (6, = —6h)

SU(3), ® SU(3)r = SU(3)y @ SU(3)4 — SU(3)y
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Goldstone’s Theorem

When a continuous symmetry group G is broken down to a sub-
group H C G in which the broken generators do not leave the
vacuum invariant, then there will be a massless scalar for every
broken generator called a Nambu-Goldstone Boson.

[m] 5 = =
June 14, 2017
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High and Low-Energy DOF

o Bellow the confinement scale, quarks are no longer the observable
DOF. The new DOF are Nambu-Goldstone bosons (NGB): pions,
kaons etc.

E

AN

UL, R,dL,R, SL,R 323
Aqcep--1--------------

8®1

Figure: Schematic diagram showing the relevant DOF as a function of
energy in QCD.
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NOTE

Qo

I have lied a bit. The actually symmetry group of the classical
Lagrangian is U(3) g®U(3),~SU(3) r®SU(3) ,@U(1)y@U(1) 4

The U(1) 4 is not good quantum symmetry, it is anomalous

The symmetry breaking pattern is actually
SUB)r®SU(3)L®U(1)y—SUB)yU(1)y

Due to the non-zero mass terms in the QCD Lagrangian:

Lu=—(gkMar+al Mar),  M=diag(mu,ma,ms)

the SU(3)y ® SU(3) 4 symmetry is explicitly broken, but
approximately still present since m,,, mq, ms < Aqcp.

The pions, Kaons, etc. are then called psuedo-Nambu-Golstone
bosons.
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Chiral Lagrangian

o Since pions, kaon etc. are the correct DOF bellow the confinement
scale, we need a Lagrangian that describes their dynamics.
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Chiral Lagrangian

o Since pions, kaon etc. are the correct DOF bellow the confinement
scale, we need a Lagrangian that describes their dynamics.

o Need low-energy Lagrangian describing pions, etc. to obey the
high energy symmetries.
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Chiral Lagrangian
o Since pions, kaon etc. are the correct DOF bellow the confinement
scale, we need a Lagrangian that describes their dynamics.

o Need low-energy Lagrangian describing pions, etc. to obey the
high energy symmetries.

o We will find that the correct way to parameterize the NGB is

Y =exp (Z}/il_[“)\a>

II* modes
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Chiral Lagrangian
o Since pions, kaon etc. are the correct DOF bellow the confinement
scale, we need a Lagrangian that describes their dynamics.

o Need low-energy Lagrangian describing pions, etc. to obey the
high energy symmetries.

o We will find that the correct way to parameterize the NGB is

Y =exp (Z}/il_[“)\a>

I1% are the NBG
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Chiral Lagrangian
o Since pions, kaon etc. are the correct DOF bellow the confinement
scale, we need a Lagrangian that describes their dynamics.

o Need low-energy Lagrangian describing pions, etc. to obey the
high energy symmetries.

o We will find that the correct way to parameterize the NGB is

Y =exp (Z’}/EH‘L)\J

Ao Gell-Mann matrices
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Chiral Lagrangian
o Since pions, kaon etc. are the correct DOF bellow the confinement
scale, we need a Lagrangian that describes their dynamics.

o Need low-energy Lagrangian describing pions, etc. to obey the
high energy symmetries.

o We will find that the correct way to parameterize the NGB is

Y =exp (Z’}/Eﬂa)\a>

fr is a constant, called the pion decay constant. It is determined,
empirically, to be f; ~ 130.4 MeV.
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Chiral Lagrangian

o Since pions, kaon etc. are the correct DOF bellow the confinement
scale, we need a Lagrangian that describes their dynamics.

o Need low-energy Lagrangian describing pions, etc. to obey the
high energy symmetries.

o We will find that the correct way to parameterize the NGB is

Y =exp (i]\l,/iﬂa)\a>

¥ will under SU(3)r ® SU(3), transform as
¥ — RYL!
for (R, L) € SU3)r ® SU(3) .

Logan A. Morrison (UCSC) CCWZ Construction June 14, 2017 10 / 28



Chiral Lagrangian
o Since pions, kaon etc. are the correct DOF bellow the confinement
scale, we need a Lagrangian that describes their dynamics.

o Need low-energy Lagrangian describing pions, etc. to obey the
high energy symmetries.

o We will find that the correct way to parameterize the NGB is

Y =exp (Z’}/EH“)\G>

o The Lagrangian describing the light mesons will be given by

L= fTr<8u2T81‘2> 4.
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Part 11
CCWZ Construction
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Construction of States from Vacuum

o Consider a theory with a set of fields ®(z) transforming under a
compact Lie group G.
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Construction of States from Vacuum

o Consider a theory with a set of fields ®(z) transforming under a
compact Lie group G.

o Suppose these field acquire a non-zero expectation value
(Q| ®|Q2) = F which is invariant under a subgroup H C G

o H is the little group

e.g. G =S0(3) = H = SO(2)
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Construction of States from Vacuum

o Consider a theory with a set of fields ®(z) transforming under a
compact Lie group G.

o Suppose these field acquire a non-zero expectation value
(Q @ |Q2) = F which is invariant under a subgroup H C G

o We want to identify the NGB, one for each broken generator. One
candidate is:

®(z) = exp (ilfm <;;~>TA> F

T4 generators of the Lie algebra of G

© 4(x) potentially massless, scalar fields (have no potential since a
constant ©, yields an equivalent vacuum

Fy constant with mass dimension [Fy] = m!
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[dentification of NGB

o Define T to be the unbroken generators (generators that leave
vacuum invariant) and 7' to be the broken generators

T°F=0 and T'F+#0

Little ¢ index for unbroken generators

Little @ index for broken generators
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Identification of NGB

o Define T to be the unbroken generators (generators that leave
vacuum invariant) and 7" to be the broken generators

o A generic group element of g € G can be written as
Fundamental formula of CCWZ

g = exp (z'ocATA> = exp (if@[oz]fd) exp(ifola])T?)

=} = = = A
Logan A. Morrison (UCSC) CCWZ Construction
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[dentification of NGB

o A generic group element of g € G can be written as
g =exp(iasT") = exp(ifala]T*) exp(ifala]T*)

* Infinitesimal proof

exp <iaATA> =1 +iogT% +ia T + O(a2)
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Identification of NGB

o A generic group element of g € G can be written as
g = exp (iaATA) = exp (ifa, [a]T") exp(ifu[a]T?)

* Infinitesimal proof
exp (iozATA) =T +ia,T? + i, T* + O(a?)

exp(ifala]T?) exp(ifala]T") = I +ifal™ +ifaT* + Ofafas f3. 12)
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[dentification of NGB

o A generic group element of g € G can be written as
g = exp (iaATA> = exp(z’f@ [a]T&) exp(ifq[a]T?)
* Infinitesimal proof
exp (iozATA) =T +iagT® +ia T + O(aQ)
exp (ifala] 1) exp(ifala]T®) = I +ifo T +if, T + Ofafa, 12, f2)
Thus,

falo] = aq + O(a2)
falo] = ag + O(a?)
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[dentification of NGB

o Define T to be the unbroken generators (generators that leave
vacuum invariant) and 7" to be the broken generators

o A generic group element of g € G can be written as
g= exp(iaATA) = exp(zfa[ 1T ) exp(ifaa]T?)
o Since T leaves the vacuum invariant, we can write ® as
O(x) = exp(i;_f@ATA> F = exp(i}/ﬁH@T&) exp(i&(x)T*)F
— exp (ZI{H T“) F

Since exp(i&(z)T*)F = exp(0)F = F
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Identification of NGB

o Define T to be the unbroken generators (generators that leave
vacuum invariant) and 7" to be the broken generators

o A generic group element of g € G can be written as

g = exp <iaATA) = exp (ifd [a]Ta) exp(ifala]T®)

the Goldstone boson matrix

o Since T leaves the vacuum invariant, we can write ® in terms of
Goldstone Boson Matrix

UL F where U] = exp <“/_

2 .
—1I1,7°
F )
I1, are the NBGs, one for each broken generator.
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Transformations Properties of Fields under G

o We would like to determine how U[II] transforms under a generic
group element g € G
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Transformations Properties of Fields under G

o We would like to determine how U[II] transforms under a generic
group element g € G

o Using the decomposition of a generic group element into broken
and unbroken generators, we find

g®(x) = gU[IF = U[ID]A[IL g|F = U[I9D]F
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Transformations Properties of Fields under G

o We would like to determine how U[II] transforms under a generic
group element g € G

o Using the decomposition of a generic group element into broken
and unbroken generators, we find

g®(x) = gU[IF = U[ID]A[IL g|F = U[I9D]F

o We thus find that the II fields transform as

U] =UMWIh[ILg) = UMY]=gUM](h[IL,g)~"
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Transformations Properties of Fields under G

o We would like to determine how U[II] transforms under a generic
group element g € G

o Using the decomposition of a generic group element into broken
and unbroken generators, we find

g®(x) = gU[IF = U[ID]A[IL g|F = U[I9D]F

o We thus find that the II fields transform as

U] =UMWIh[ILg) = UMY]=gUM](h[IL,g)~"

o This obeys the group multiplication law.
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Transformations Properties of Fields under G

o This obeys the group multiplication law. Transforming by g;go
9192® = g1 goUF = g U192 A]IL, go] F
= U@ 92)|L[11092) go]h[IL, go] F
= UMW 92)h[IL, gy go] F
= U919 F
o With h[IT, g1g2] = h[I192), g1]h[T, go] and

U(19192))=g; go U[MA[T1,g2] ~ 1 A[T1092) ,g1] =1 =g1 g2 U [TT] h[IT,g1 g2] ~*

o U[I] is called a non-linear realization of G (called a realization
instead of representation since it is non-linear)
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Transformation Properties of Fields Under H

o To determine how U[II] transforms under #, we need the
commutation relations between generators: 7¢, 7%
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Transformation Properties of Fields Under H

o To determine how U[II] transforms under #, we need the
commutation relations between generators: 7¢, 7%

o The commutation relations are
[T, T =i f2T° + if221° = T° (10",

fgb = 0 since H is a subgroup

taq is adjoint representation of H generators
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Transformation Properties of Fields Under H

o To determine how U[II] transforms under #, we need the
commutation relations between generators: 7¢, 7%

o The commutation relations are

[T“,Tb] = ifOT 4 i fPTC = T (144) .2

(72, 7%) = if2T° 4 ifeTe = 7° (1),

f(ﬂli’ = 0 since fgb = 0 and f is totally anti-symmetric

t2 is some yet unknown representation we call 7,
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Transformation Properties of Fields Under H

o To determine how U[II] transforms under #, we need the
commutation relations between generators: 7¢, 7%

o The commutation relations are
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Transformation Properties of Fields Under H

o To determine how U[II] transforms under #, we need the
commutation relations between generators: 7¢, 7%

o The commutation relations are

o Next, we note the following identity:

expliog T T exp(—ioT®) = T? [exp(iaaty)];*
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Transformation Properties of Fields Under H

o Next, we note the following identity:

exp(iog T T exp(—iogT%) = T [exp(icaty)];”

* Infinitestimal proof

exp(iagT)T% exp(—iagT?) = (I +iagT*) T (I — iagT*) + O(a?)
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Transformation Properties of Fields Under H

o Next, we note the following identity:

%

exp(iog T T exp(—iogT%) = T [exp(iaatfr)]gé

* Infinitestimal proof

exp(iagT)T% exp(—iagT?) = (I +iagT*) T (I — iagT*) + O(a?)
= 1%+ i, (T°1" = T°T") + O(a?)
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Transformation Properties of Fields Under H

o Next, we note the following identity:

%

exp(iog T T exp(—iogT%) = T [exp(iaatfr)]gé

* Infinitesimal proof
exp(iagT)T% exp(—iagT?) = (I +iagT*) T (I — iagT*) + O(a?)
= 1%+ i, (T°1" = T°T") + O(a?)
=T% +ia, [T“, T&} +0(a?)
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Transformation Properties of Fields Under H

o Next, we note the following identity:

exp(iog T T exp(—iogT%) = T [exp(iaatfr)]gé

* Infinitesimal proof
exp(iog T T exp(—io, T) = (I + i T T (I — iagT) + O(a?)
= 1%+ i, (T°1" = T°T") + O(a?)
=T% +ia, [T“, T&} +0(a?)

=T% +ia, I (t2),* + O(a?)
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Transformation Properties of Fields Under H

o Next, we note the following identity:

exp(iog T T4 exp(—iogT%) = T? [exp(iaatfr)}éd

* Infinitestimal proof
exp(iagT)T% exp(—iagT?) = (I +iagT*) T (I — iagT*) + O(a?)
= 1%+ i, (T°1" = T°T") + O(a?)
=T% +ia, [T“, T&} +0(a?)
= 7% 4+ ia, TP (12);,% + O(a?)
— b (62 + icva (12);%) + O(0?)
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Transformation Properties of Fields Under H

o Using the previous identity, we find that for g = gy = exp(ia,T?)
and ¢ = iv/2/Fy

gnU[M] = gy exp (cHaT &)
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Transformation Properties of Fields Under H

o Using the previous identity, we find that for g = gy = exp(ia,T?)
and ¢ = iv/2/Fy

gnU] = g3 exp (cHaT ‘i)

2 .
. (1 + oI, T + %H&HBT“TI’ ;.. )
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Transformation Properties of Fields Under H

o Using the previous identity, we find that for g = gy = exp(ia,T?)
and ¢ = iv/2/Fy

gnU[M] = gy eXp(cHaTd)

2 .
. (I 4 oI, T + %HdHBT“Tb s )

2
An C An PN
= (I + cllagn T 03" + 5 Mallg T 03, 91 T3, + . ) gn
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Transformation Properties of Fields Under H

o Using the previous identity, we find that for g = gy = exp(ia,T?)
and ¢ = iv/2/Fy

guU[T] = gy exp(clly17)
2
An C Ar AT
= gy (I + el T + 5HdHBTaTb + .. )
~a 1 c? P - . |
= |1+ cllaguTg, + gﬂaHI;gHT 99 91T 93,7 + - | 9n

= exp (CHaQHngil) M

Logan A. Morrison (UCSC) CCWZ Construction June 14, 2017 15 / 28



Transformation Properties of Fields Under H

o Using the previous identity, we find that for g = gy = exp(ia,T?)
and ¢ = iv/2/Fy

guU[T] = gy exp(clly17)
2
An C Ar AT
= gy (I + el T + EHdHI;T“Tb + .. )
~a 1 c? P - . |
= |1+ cllaguTg, + EHdHi)gHT 99 91T 93,7 + - | 9n

= exp (CH&QHng;[1>QH
using previous result

= exp (el [exp(iaaty)]; s ) g
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Transformation Properties of Fields Under H

o Using the previous identity, we find that for g = gy = exp(ia,T?)
and ¢ = iv/2/Fy

guU[T] = gy exp(clly17)
2
An C Ar AT
= gy (I + el T + 5HdHBTaTb + .. )
~a 1 c? P - . |
= |1+ cllaguTg, + gﬂaHI;gHT 99 91T 93,7 + - | 9n

= exp (CHaQHngil) 9H
= exp (T [exp(iaaty)]; s ) g
= Ulexp(iaqty ) gy
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Transformation Properties of Fields Under H
o The NGB transform under H as
NGB Transformation Under H

>

(H(gn))l; = [exp(iaaty)];

I1;

Logan A. Morrison (UCSC)
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Transformation Properties Under G/H

o For a general group G, it is not possible to obtain a closed form
expression for how II transforms under the broken group element
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Transformation Properties Under G/H

o For a general group G, it is not possible to obtain a closed form
expression for how II transforms under the broken group element

o We can obtain an infinitesimal expression
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Transformation Properties Under G/H

o For a general group G, it is not possible to obtain a closed form
expression for how II transforms under the broken group element

o We can obtain an infinitesimal expression

o Consider an infinitesimal element of G/H,

9G/H = 1+ ia@T&
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Transformation Properties Under G/H

o For a general group G, it is not possible to obtain a closed form
expression for how II transforms under the broken group element

o We can obtain an infinitesimal expression

o Consider an infinitesimal element of G/H,

9G/H = 1+ ia@T&

o Under gg/y, U[I] transforms as

) 2
it o) o 2
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Transformation Properties Under G/H

o For a general group G, it is not possible to obtain a closed form
expression for how II transforms under the broken group element

o We can obtain an infinitesimal expression

o Consider an infinitesimal element of G/H,

ggn = 1+iagT*

( oy, Tam(l;Z))

) 1+
F, H2 3

o Under gg/y, U[II] transforms as

9g/mU|[r] = (1 +iag T + O(a®

2
- 1+£T“ (H@-F
Fy

+ O(a?)
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Transformation Properties Under G/H

o For a general group G, it is not possible to obtain a closed form
expression for how II transforms under the broken group element

o We can obtain an infinitesimal expression

o Consider an infinitesimal element of G/H,

9G/H = 1+ ia@T&

o Under gg/y, U[I] transforms as

gg/nU|m ]—1+i (Ha+F°aA>+...
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Transformation Properties Under G/H

o For a general group G, it is not possible to obtain a closed form
expression for how II transforms under the broken group element

()

We can obtain an infinitesimal expression

©

Consider an infinitesimal element of G/H,

9g/H = 1+ ia@Ta

©

Under gg/3;, U[I1] transforms as

9g/nUIm ]—1+£T“<H +%ad>+...

©

Therefore, 11 transforms as a shift
NGB Transformation Under G/H

oottt Pt
V2 .
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Construction of Invariants

o To describe the dynamics of the NGB, we need to construct a
Lagrangian which is invariant under G
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o We consider a one-form (Maurer-Cartan form) which we
parameterize in terms of d,[II] and e,[II]

iU 0U =dyoT% + e aT =d, + e,
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Construction of Invariants

o To describe the dynamics of the NGB, we need to construct a
Lagrangian which is invariant under G

o We consider a one-form (Maurer-Cartan form) which we
parameterize in terms of d,[II] and e,[II]

iU 0U =dyoT% + e aT =d, + e,

o Recall that U transforms as U — gUh ™[I, g], where h~L[II, g] is
space time dependent because of II(x). Thus,

U'0,U — ihU~g 10, (gUh—l)
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Construction of Invariants

o To describe the dynamics of the NGB, we need to construct a
Lagrangian which is invariant under G

o We consider a one-form (Maurer-Cartan form) which we
parameterize in terms of d,[II] and e,[II]

iU_lauU = du’cﬂ% +e I =d,+ e,

o Recall that U transforms as U — gUh ™[I, g], where h~[II, g] is
space time dependent because of II(x). Thus,

U 0,U — ihU ™ g0, (gUh”)
= ihUg™" (g(9,U) h™" + gU (9,h7"))
= ihU™ (9,U) ™" + ih (9,h7")
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Construction of Invariants

o iU _18MU transforms as

iU 0,U = ihU™ (9,U) h™! +ihd,h™*
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Construction of Invariants

o iU _18MU transforms as

iU 0,U = ihU™ (9,U) h™! +ihd,h™*

o In terms of d,, and e, this is

dy + e =h(d,+eu)h™ +ihd,h?
= hd,h ™ + h (e, +1i0,) b
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Construction of Invariants

o iU _18MU transforms as

iU 0,U = ihU™ (9,U) h™! +ihd,h™*

o Thus, d, and e, transform under an arbitrary group element g € G
as

du — h[Ha g}duhil [H7 g]
e, — [, g] (e, +i0,) h~ 1[I, g]
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Construction of Invariants

o iU _18MU transforms as

iU 0,U = ihU™ (9,U) h™! +ihd,h™*

o Thus, d, and e, transform under an arbitrary group element g € G
as

du — h[Ha g}duhil [H7 g]
e, — [, g] (e, +i0,) h~ 1[I, g]

o d,, transforms in the r; representation even under a full group
transformation

dua — explialll, g] (t)]," d,
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Construction of Invariants
o U _18MU transforms as
iU 0,U = ihU™ (9,U) h™! +ihd,h™*
o Thus, d, and e, transform under an arbitrary group element g € G
as
du — h[H7 g}duhil[na g]

e, — h[I, g] (e, +i0,) h 1[I, g]

o d,, transforms in the r; representation even under a full group
transformation

dua — explialll, g] (t2)]," d

o ¢, transforms like a gauge field with H being a local gauge group
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Lowest Order Lagrangian

o Since d,, transforms for a general group element g € G as
d, — h[IL, gld,h~ 111, g], we can see that

Tr(d,d")
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Lowest Order Lagrangian

o Since d,, transforms for a general group element g € G as
d, — h[IL, gld,h~ 111, g], we can see that

Tr(d,d")

o Expanding iU~10,U, we find, letting ¢ = v/2/Fy

U0,U =i (I dellgT? + - ) 9 (T +iellyT 4 - )
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Lowest Order Lagrangian

o Since d,, transforms for a general group element g € G as
d, — h[IL, gld,h~ 111, g], we can see that

Tr(d,d")
o Expanding Z'U_lauU, we find, letting ¢ = v/2/Fy
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Lowest Order Lagrangian

o Since d,, transforms for a general group element g € G as
d, — h[IL, gld,h~ 111, g], we can see that

Tr(d,d")

o Expanding iU~10,U, we find, letting ¢ = v/2/Fy

U0,U =i (I dellgT? + - ) 9 (T +iellyT 4 - )
:i(I—icH@Td+---) (z’c&HHdT&—i—---)
= —C@MHaTd + -

V2
Ey

Ol +
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Lowest Order Lagrangian

o Since d,, transforms for a general group element g € G as
d, — h[IL, gld,h~ 111, g], we can see that

Tr(d,d")

o Expanding iU~10,U, we find, letting ¢ = v/2/Fy

V2

U0, U = —~—0, 11,7 + - --
Fy
o Therefore, we find that d,, is
A 2 PR 2
d'u’&Ta fadeTa N . d,u,d — _iauné 4o

R Fy
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Lowest Order Lagrangian

o Since d,, transforms for a general group element g € G as
d, — h[IL, gld,h~ 111, g], we can see that

Tr(d,,d")

o Expanding iU ~19,U, we find, letting ¢ = v/2/Fy
V2

iU0U = —~=0, 1T + - -
Fo
o Therefore, we find that d, is
I 2 s 2
d#’dTa = —£8 H@Ta —+ - — d#’@ = fauﬂa —+ -

T
o The lowest order Lagrangian is thus
@ _ Fo 1

L7 = =5 Tr(dud") = 5 (9ulla) (0"1La) + - -
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Part 111
Chiral Perturbation Theory
(ChPT)
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Goldstone Boson Matrix

o Symmetry group is G = SU(3);, ® SU(3)r which is broken down to
H=SU@3)y
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g = (L, R) Le SU(3)L,R € SU(3)R
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o We can write generic element g € G as

g = (L, R) Le SU(3)L,R € SU(3)R

o An element h € ‘H can be written as

h=(V,V) VeSu@B)y

o Note that a generic element of g can be written as
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o Symmetry group is G = SU
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Goldstone Boson Matrix

o Symmetry group is G = SU(3);, ® SU(3)r which is broken down to
H=SU@3)y

o We can write generic element g € G as

g = (L, R) Le SU(3)L,R € SU(3)R

o An element h € ‘H can be written as

h=(V,V) VeSu@B)y

o Note that a generic element of g can be written as

g=(L,R)=(L,RL'L) = (1, RL")(L, L)

o We identify the Goldstone matrix as ¥ = RLT € SU(3)
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Goldstone Matrix

o The Goldstone matrix is

Y = RL' = exp (Z}@Hm>

T
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Goldstone Matrix

o The Goldstone matrix is

Y = RL' = exp (fnm)

T

o II%), is
1

0 + +

T 4+ — V2r V2K

V3! )
Ha)\a = \/i'ﬂ-_ _7.[-0 _|__ gn \/§K0
— 2
V2K~ V2K —§77
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Goldstone Matrix

o The Goldstone matrix is

Y = RL' = exp (Z}@Hm>

T

o II%), is
1
(e p— Vort V2Kt
V3" 1
"X\, = V2r~ —m0 4+ gn V2KD°
_ 2
V2K~ V2K° —3n

7% : Neutral pion

7+ : Charged pions
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Goldstone Matrix

o The Goldstone matrix is

Y = RL' = exp (Z}@Hm>

™
o II%), is

1
0+ — Vort V2Kt
3"

1

Ien, = V2 704 U V2IKO°
_ 2

V2K~ V2K —3n

K% K9 : Neutral Kaon and anit-neutral Kaon

K* : Charged Kaons
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Goldstone Matrix

o The Goldstone matrix is

Y = RL' = exp (Z}@Hm>

T

o II%), is
1
0 + +
w0 4+ 7, V21 V2K
V3! )
Ha)\a = \/i'ﬂ'_ _7.[.0 + 577 \/§K0
— 2

V2K~ V2K° —3"

n : Eta
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Transformations Properties

o Under a generic group element g = (L, R), ¥ transforms as
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Transformations Properties

o Under a generic group element g = (L, R), ¥ transforms as

(1,%) = (1, RLY) — (L, R)(1, RL")
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Transformations Properties

o Under a generic group element g = (L, R), ¥ transforms as

= (L, RRLT")
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Transformations Properties

o Under a generic group element g = (L, R), ¥ transforms as

= (L, RRLT")

= (L, RRL'LTL)

Logan A. Morrison (UCSC) CCWZ Construction June 14, 2017 22 / 28



Transformations Properties

o Under a generic group element g = (L, R), ¥ transforms as

(1,%) = (1,RLY) — (L, R)(1, RL")

Logan A. Morrison (UCSC) CCWZ Construction June 14, 2017

22 /28
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o Under a generic group element g = (L, R), ¥ transforms as
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Transformations Properties

o Under a generic group element g = (L, R), ¥ transforms as

Y — RYL
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Transformations Properties

o Under a generic group element g = (L, R), ¥ transforms as
Y — RXLT

o Under h = (V,V) € H, ¥ transforms as
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Transformations Properties

o Under h = (V,V) € H, ¥ transforms as (¢ = v2/ fr, 7% = X\o/2)

DI Vs )l
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Transformations Properties

o Under h = (V,V) € H, ¥ transforms as (¢ = v2/ fr, 7% = X\o/2)

Y- vyl
= Vexp(icll®A) VT + - -
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Transformations Properties

o Under h = (V,V) € H, ¥ transforms as (¢ = v2/ fr, 7% = X\o/2)

¥ = VeVl
=V exp(icII®\) VT
= (I +ia®r,) (I +icl'n) (I —ia®r.) + -+
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Transformations Properties
o Under h = (V,V) € H, ¥ transforms as (¢ = v2/ fr, 7% = X\o/2)
DI 19} 74l
= V exp(icIl®\, ) VT
= (I +ia%T,) (I + ichTb) (I —iare) + -

= I + icll’ — ca®IP 1, 4 ca®ITyrg + - - -
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Transformations Properties

o Under h = (V,V) € H, ¥ transforms as (¢ = v2/ fr, 7% = X\o/2)

Y- Vevi
= V exp(icIl®\, ) VT
= (I +ia%T,) (I + ichTb) (I —iare) + -
= I +icl’r, — ca®T’7,7y + ca®MPry7g + - - -

= I +icll’ry, — ca®T[7,, 7] + - - -
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Transformations Properties

o Under h = (V,V) € H, ¥ transforms as (¢ = v2/ fr, 7% = X\o/2)

Y- Vevi
= V exp(icIl®\, ) VT
= (I +ia%T,) (I + ichTb) (I —iare) + -
= I +icl’r, — ca®T’7,7y + ca®MPry7g + - - -
= [ +icllbr, — caaHb[Ta, ) + - -
= I 4 icIl’7, — ica®II® f%r, + - ..
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Transformations Properties

o Under h = (V,V) € H, ¥ transforms as (¢ = v2/ fr, 7% = X\o/2)

Y- Vevi
= V exp(icIl®\, ) VT
= (I +ia%T,) (I + ichTb) (I —iare) + -
= I +icl’r, — ca®T’7,7y + ca®MPry7g + - - -
= [ +icllbr, — caaHb[Ta, ) + - -
= I +icIl’n, — ica®Il f%r, + ...
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Transformations Properties

o Under a generic group element g = (L, R), ¥ transforms as
Y — RYLT
o Under h = (V,V) € H, ¥ transforms under adjoint!

h, .
TI¢ _1> I — fabc(yal—[b
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Transformations Properties

o Under a generic group element g = (L, R), ¥ transforms as
Y — RYLT
o Under h = (V,V) € H, ¥ transforms as

II¢ — II€ — fabcaal—[b

o Under an element of the coset space (I, RL'), ¥ transforms as
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Transformations Properties

o Under an element of the coset space (I, RL'), ¥ transforms as

G/MH={(L,R)H}
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Transformations Properties

o Under an element of the coset space (I, RL'), ¥ transforms as

G/MH={(L,R)H}

Typical element in (L, R)H can be written as

(L,R)(V,V) = (LV,RV) = (LV,RL'LV) = (I, RL")(LV, LV)
= (I, RL(V', V")
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Transformations Properties

o Under an element of the coset space (I, RL'), ¥ transforms as

G/MH={(L,R)H}

Typical element in (L, R)H can be written as

(L,R)(V,V) = (LV,RV) = (LV,RL'LV) = (I, RL")(LV, LV)
= (I, RL(V', V")

Thus, (1, RLH)(V', V') = (L, R)(V, V), hence

(1, RL"YH = (L, R)H
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Transformations Properties

o Under a generic group element g = (L, R), ¥ transforms as
Y — RYLT
o Under h = (V,V) € H, ¥ transforms as

II¢ — II€ — fabcaal—[b

o Under an element of the coset space (I, RL'), ¥ transforms as

Y — RL'Y
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Transformations Properties

o Under a generic group element g = (L, R), ¥ transforms as
Y — RYLT
o Under h = (V,V) € H, ¥ transforms as

II¢ — II€ — fabcaal—[b

o Under an element of the coset space (I, RL'), ¥ transforms as

Y — RL'Y
Y = (I +ia’,) (I +icll%Ty) + - - -
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Transformations Properties

o Under a generic group element g = (L, R), ¥ transforms as
Y — RYLT
o Under h = (V,V) € H, ¥ transforms as

II¢ — II€ — fabcaal—[b

o Under an element of the coset space (I, RL'), ¥ transforms as

Y — RL'Y
Y = (I +ia’,) (I +icll%Ty) + - - -

1
=1 +icr, (Ha+a“>+~-
C
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Transformations Properties

o Under a generic group element g = (L, R), ¥ transforms as
Y — RYLT
o Under h = (V,V) € H, ¥ transforms as
II¢ — II€ — fabcaal—[b

o Under an element of the coset space (I, RL'), ¥ transforms as a
shift!

g/M
m /= me+ f—ﬂa“

V2
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Chiral Lagrangian

o To compute the lowest order chiral Lagrangian, we need to
compute iETOHE. Turns out that Z'ETOHE =d,
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Chiral Lagrangian

o To compute the lowest order chiral Lagrangian, we need to
compute iETOHE. Turns out that Z'ETOHE =d,
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Chiral Lagrangian

o To compute the lowest order chiral Lagrangian, we need to
compute iETOHE. Turns out that Z'ETOHE =d,
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Chiral Lagrangian

o To compute the lowest order chiral Lagrangian, we need to
compute iETOHE. Turns out that Z'ETOHE =d,

210, =i (I —icll®7,) 0, (I + icll®7y) + - - -
= —cO 1% + - -
V2
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Chiral Lagrangian

o To compute the lowest order chiral Lagrangian, we need to
compute iETOHE. Turns out that Z'ETOHE =d,

V2

W

0TI, + - -
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Chiral Lagrangian

o To compute the lowest order chiral Lagrangian, we need to
compute iETOHE. Turns out that Z'ETOHE =d,

o To lowest order, d,, is

V2

KA

Ol + -+
o The lowest order chiral Lagrangian is

(ot Tr(d,d")
= 2 Tr(d,
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Chiral Lagrangian

o To compute the lowest order chiral Lagrangian, we need to
compute iETOHE. Turns out that Z'ETOHE =d,

o To lowest order, d,, is

V2

KA

0,107, + - -

o The lowest order chiral Lagrangian is

ﬁ@—ﬁﬁuW)
= o

4
o Note that
dya* = -3 (9,37) 3 (o2)
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Chiral Lagrangian

o To compute the lowest order chiral Lagrangian, we need to
compute iETOHE. Turns out that Z'ETOHE =d,

o To lowest order, d,, is

2
dy, = _\fCauHaTa o

o The lowest order chiral Lagrangian is
@ _ Iz
E = Z Tr(d#d“)
o Note that
dud* = -3 (9,31) 3 (957)
= (9,2) 2% (6“ET) + total derivative
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Chiral Lagrangian

o To compute the lowest order chiral Lagrangian, we need to
compute iETOHE. Turns out that Z'ETOHE =d,

o To lowest order, d,, is

V2
fx

o The lowest order chiral Lagrangian is

2
£ = 7% Te(d,d")

dy, = —L20,7, + - -

o Note that
dud' = —%1(9,%) X1 (9"%)
= <8MZT> oyt (B“ET) + total derivative
= (0,Y) (3“ET> + total derivative
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Chiral Lagrangian

o To compute the lowest order chiral Lagrangian, we need to
compute iETOHE. Turns out that Z'ETOHE =d,

o To lowest order, d,, is

V2

KA

0,107, + - -

o The lowest order chiral Lagrangian is

2 2
(2) — JIm Wy — I st
£® = T Tr(dyd") = v (9,20"5)
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Quark Masses and Symmetry Breaking

o Chiral symmetry is not exact. The quark masses break chiral
symmetry.
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Quark Masses and Symmetry Breaking

o Chiral symmetry is not exact. The quark masses break chiral
symmetry.

o Can modify chiral Lagrangian to include symmetry breaking

Lo = Jfﬁ(auzaﬂzf )+ %BO Tr(2Mf+ M)

o Treat M as a field which transforms as M — RM L' (Spurion
field)

o H symmetry is broken by the expectation value of M

(M) = diag(m.,, mg, ms)
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Gauging Global Symmetry and Gauge Bosons

o It is possible to describe gauge interactions using chiral Lagrangian
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Gauging Global Symmetry and Gauge Bosons
o It is possible to describe gauge interactions using chiral Lagrangian

o To do so, the ordinary derivative is replaced with a covariant one

2 2 f230
£? = Zﬂ Tr(D,XD"Y) + ”T Tlr(EMT + MZT)

where

DY = 8,5 —ir, % + %,
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Gauging Global Symmetry and Gauge Bosons
o It is possible to describe gauge interactions using chiral Lagrangian

o To do so, the ordinary derivative is replaced with a covariant one

2 2By

£® = T TH(D, DY) + Tr(2M' + M)

where

DY = 8,5 —ir, % + %,

o Gauge bosons are described by 7, and [,.
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Gauging Global Symmetry and Gauge Bosons
o It is possible to describe gauge interactions using chiral Lagrangian

o To do so, the ordinary derivative is replaced with a covariant one

2 2 f230
£? = Zﬂ Tr(D,XD"Y) + ”T Tlr(EMT + MZT)

where

DY = 8,5 —ir, % + %,

o Gauge bosons are described by 7, and [,.

o This can be done for a general group G by modifying the
Maurer-Cartan form. iU _18MU is replaced with

A, =UM]"" (A, +1i0,) U] = d, + e,
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Summary

o When we have a theory invariant under a Lie group G which is
broken down to a subgroup H, need a method to describe
dynamics of the NBG

o Found that a smart way to parameterize the NBG was through

o
exp (ZI\;(H&T“>

0

o Can construct a term d,, from Maurer-Cartan form iU [I1] 719, U[II]
which transformed under g as

d# - h[Ha g]duh[na g]_l
o Lowest order Lagrangian can be constructed using
F2
£ = TO Tr(d,d")
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The End
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