GROUP STRUCTURE OF SPONTANEOUSLY BROKEN GAUGE THEORIES

Joseph Connell June 7, 2017

Phys 251, Group Theory, Dr. Howard Haber, UCSC

OUTLINE

- · Global Symmetries
 - $\cdot \phi^4$ Theory
 - \cdot ϕ_i Linear Sigma Model
- · Goldstone's Theorem
- · Local Symmetries (Gauge Theories)
 - · Abelian Higgs Mechanism
 - · Non-abelian Gauge Theories
 - · Electroweak Theory
 - · QCD
 - · Grand Unification

$\mathsf{SYMMETRIES}\;\mathsf{OF}\;\mathscr{L}$

Spacetime:

- · Translations
- · Rotations
- · Boosts

All QFT's have these \rightarrow Poinaré symmetry

Internal:

- · Non-spacetime
- · Quantum Numbers
- · Noether Charge

$\mathsf{Symmetries} \; \mathsf{of} \; \mathscr{L}$

Symmetry breaking can be:

Explicit: \mathscr{L} does not respect the symmetry, but the perturbation is small \Rightarrow approximate symmetry.

Spontaneous: $\mathscr L$ does respect the symmetry, but the ground state breaks it \Rightarrow vacuum expectation value (vev) = v

ϕ^4 Theory

In a Lagrangian with one scalar field $\phi(t, x, y, z)$

$$\mathcal{L} = T(\partial_{\mu}\phi) - V(\phi, \tau)$$

$$\mathcal{L} = \frac{1}{2}(\partial_{\mu}\phi)^{2} - \frac{1}{2}m^{2}\phi^{2} - \frac{\lambda}{4!}\phi^{4}$$

 m^2 and λ are au dependent. For $au < au_c$, $m^2 o -m^2$

 \mathscr{L} is invariant under $\phi \to -\phi \Rightarrow \mathbb{Z}_2$ symmetry $\{I, -I\}$

SPONTANEOUS SYMMETRY BREAKING

However, the system falls into one of its new ground states at $V_{min}=V(\phi_o)$, where $\phi_o=\pm\sqrt{\frac{6m^2}{\lambda}}=\pm v$

Shifting the origin to ϕ_0 , we define a new field

$$\phi(x) = v + \sigma(x)$$

Expanding \mathcal{L} about the classical minimum V_{min} :

$$\mathscr{L} = \frac{1}{2}(\partial_{\mu}\sigma)^2 - \frac{1}{2}2m^2\sigma^2 - \sqrt{\frac{\lambda}{6}}m\sigma^3 - \frac{\lambda}{4!}\sigma^4$$

- The \mathbb{Z}_2 symmetry is spontaneously broken by the σ^3 term
- This \mathcal{L} now describes $\sigma(x)$, a scalar field with mass = $\sqrt{2}m$

Generalizing to N fields ϕ_i , i = 1, ..., N, the symmetry becomes continuous.

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi^{i})^{2} + \frac{1}{2} m^{2} (\phi^{i})^{2} - \frac{\lambda}{4} [(\phi^{i})^{2}]^{2}$$

This \mathcal{L} is invariant under the rotation group O(N):

$$\phi^i \to R^{ij}\phi^j$$
 (1)

Now V_{min} is satisfied for any ϕ_o^i vector with length $\phi_o^i = \sqrt{\frac{m^2}{\lambda}} = v$ and arbitrary direction.

N=2 Visualization

Circular minima:
$$\phi_1^2 + \phi_2^2 = \frac{m^2}{\lambda^2}$$

Pick the N^{th} field to minimize $V(\phi)$:

$$\phi_o^i = (0, 0, ..., 0, v)$$

Define shifted fields:

$$\phi^{i}(x) = (\pi^{k}(x), v + \sigma(x))$$
 $k = 1, ..., N - 1$

The radial curvature of $V(\phi)$ makes $\sigma(x)$ a massive field (mass term in \mathcal{L}).

- $\cdot \mathscr{L}$ will still have an unbroken O(N-1) symmetry.
- · O(N-1) is the little group H that leaves ϕ_0 invariant.
- The $\pi^k(x)$ fields rotate in an (N-1)-dimensional trough.

For N=4, the 3 massless "pion" fields correspond to the real particles:

Pions
$$\pi^+, \pi^0$$
, and π^-

GOLDSTONE'S THEOREM

Spontaneous breaking of continuous global symmetries implies the existence of massless, spinless particles.

Massless Nambu-Goldstone bosons occur for each generator of the broken symmetry.

Ex: N=4, O(N-1) has 3 generators \Rightarrow 3 massless pions: $\pi^{\pm,o}$

GOLDSTONE'S THEOREM

 \mathscr{L} remains invariant under the little group O(N-1)

$$\phi_i' = e^{i\alpha^a T_{ij}^a} \phi_j = (I + i\alpha^a T_{ij}^a + ...) \phi_j$$

where the T^a are generators of the Lie group that satisfy the Lie algebra:

$$[T^a, T^b] = if^{abc}T^c$$

A massless Goldstone boson arises for each generator T.

PAUSE

GAUGE THEORIES

A "gauged" transformation has local spacetime dependence.

$$\alpha \to \alpha(x)$$

For example, a $\mathcal L$ can be invariant under an abelian U(1) gauge transformation G:

$$\phi \to e^{i\alpha(x)}\phi(x)$$
 and $A_{\mu}(x) \to A_{\mu}(x) - \frac{1}{e}\partial_{\mu}\alpha(x)$

where A_{μ} is a gauge field.

GAUGE THEORIES

To keep ${\mathscr L}$ invariant under G, we need a covariant derivative D_{μ} :

$$\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} + ieA_{\mu}$$

For a complex scalar field coupled to itself and an EM field:

$$\mathcal{L} = |D_{\mu}\phi|^2 - V(\phi) - \frac{1}{4}(F_{\mu\nu})^2$$

where $F_{\mu\nu}$ is the EM field-strength tensor.

GAUGE THEORIES WITH SSB

What happens if we combine local gauge invariance and symmetry breaking?

ABELIAN HIGGS MODEL

Take a **complex** scalar field with the ϕ^4 potential:

The U(1) global symmetry is broken by $\phi_{\rm o}={\rm v}$ Expanding about v:

$$\phi(x) = \phi_0 + \frac{1}{\sqrt{2}}(\phi_1(x) + i\phi_2(x))$$

The rewritten \mathscr{L} describes a massive ϕ_1 field and ϕ_2 is a massless Goldstone boson.

ABELIAN HIGGS MODEL

The kinetic term, with a gauged transformation, D_{μ} , and SSB:

$$|D_{\mu}\phi|^2 = \tfrac{1}{2}(\partial_{\mu}\phi_1)^2 + \tfrac{1}{2}(\partial_{\mu}\phi_2)^2 + (\sqrt{2}e\phi_o)A_{\mu}\partial^{\mu}\phi_2 + e^2\phi_o^2A_{\mu}A^{\mu} + ...$$

 A_{μ} is a massive gauge field coupled to ϕ_2 .

ABELIAN HIGGS MODEL

Unitary Gauge: Pick $\alpha(x)$ such that ϕ_2 is eliminated from the theory.

$$\mathscr{L}_{unitary} = (\partial_{\mu}\phi)^2 + e^2\phi^2 A_{\mu}A^{\mu} - V(\phi) - \frac{1}{4}(F_{\mu\nu})^2$$

Higgs Mechanism: If $V(\phi)$ favors $\phi_0 = v$, this \mathscr{L} describes a massive gauge boson A_{μ} and a massive field ϕ_1 :

$$\phi_1 = h = \text{Higgs Boson}$$

Generalize to local gauge symmetries with non-commuting generators.

Non-abelian examples:

- · QCD
- · Electoweak
- · Standard Model
- · Grand Unified Theories

Quantum Chromodynamics:

Gauge Group: SU(3)

The strong interactions can be described by an unbroken SU(3) color gauge theory with a scalar field in the adjoint representation.

The adjoint rep. has $n^2 - 1$ generators.

$$SU(3) \Rightarrow 3^2 - 1 = 8$$
 massless gluons

Electroweak:

$$SU(2)_L \bigotimes U(1)_Y$$

- · $SU(2)_L$: weak isospin, 3 generators
- · $U(1)_{Y}$: weak hypercharge, 1 generator

The symmetry is broken below the unification energy (246 GeV):

$$SU(2) \bigotimes U(1)_Y \Rightarrow U(1)_{EM}$$

- · 3 massive bosons: $W^{\pm}, Z^{o} \rightarrow$ weak force
- · 1 massless boson: γ photon \rightarrow EM force

Standard Model:

$$SU(3) \bigotimes SU(2)_{L} \bigotimes U(1)_{Y}$$

- · SU(3): strong force
- · $SU(2) \otimes U(1)_{Y}$: electroweak force

If we break the second of these in a more complicated way, we get an extended **Higgs sector**, which is necessary for SUSY, MSSM, and CPV for early universe baryon-antibaryon asymmetry.

Grand Unified Theories:

Georgi-Glashow Model, SU(5):

$$SU(5) \supset SU(3) \bigotimes SU(2)_{L} \bigotimes U(1)_{Y}$$

*Predicts proton decay (never observed)

Other candidates:

- · SO(10)
- · SU(8)
- · O(16)

Grand Unified Theories:

REFERENCES

- 1. Peskin, Michael E. and Schroeder, Daniel V., *An Introduction to Quantum Field Theory*, Westview Press, Perseus Books Group, 1995
- 2. Schwartz, M. D., Quantum Field Theory and the Standard Model. Cambridge: Cambridge University Press, 2013.
- 3. Tanedo, Flip. "Why Do We Expect A Higgs Boson?" *Quantum Diaries*. Web. 24 May, 2017.
- 4. Davies, Daniel. *Gauge Theory of the Standard Model*. CSU, Northridge. May 2016.

QUESTIONS?

