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Spacetime Isometries: a background

Let ℝ4, 𝜂 be a pseudo-Riemannian manifold with metric 𝜂=diag(1,-1,-1,-1)

Maps φ: ℝ4 → ℝ4 which preserve the metric (φ*𝜂= 𝜂) are called isometries

(continuous isometries form a continuous group)

In this Minkowski spacetime, the isometry group is a 10 dimensional Lie
group, called the Poincaré Group “P”:

• 4 translations (3 spatial, 1 temporal)

• 6 rotations (3 entirely spatial, 3 spatiotemporal “Boosts”)



The Poincaré Group 

We denote a typical element of P by

and its action on elements of the tangent space T ℝ4 (vectors) by

Group multiplication rule:

Inverse:

Normal subgroup: 

Remark: O(1,3) is not a normal subgroup of P



The Lorentz Group

Six dimensional, non-compact, non-connected, real Lie group

It has four doubly-connected* components, which 
characterize the light cone structure

Boosts transport vectors along hyperbolas (right), 
confining them to their own side of the light cone.

Since a boost that rotates a time/space-like vector 
to the surface of the light cone does not exist, the 
Lorentz group is non-compact.

*to be discussed shortly



The Restricted Lorentz Group

If we mod out the discrete group composed of reflections and time 
reversal (isomorphic to the Klein four-group {e, T, P, PT}) we find the 
identity/connected component

In matrix form, typical elements look like:

Rotation about z axis Boost along x axis

Note: rotation subgroup compact: topology of circle; boost subgroup noncompact: open line



The Unitarian Trick (Hurwitz, Weyl)
The complexification of su(2) is isomorphic to sl(2,C), thus

The image of this algebra under the exp map is the group
which contains the compact subgroup

Lorentz Group non-compact, so we lose the chance of Unitary 
representations of finite dimension.

Best chances of building a theory come from holomorphic
representations of the complexified lie algebra of Lorentz Group



Remark: Holomorphic vector spaces

In a complex vector space spanned by it is 
appropriate to define  a basis:

and a linear map called the “almost complex 
structure”

This structure naturally splits the vector space into 2 disjoint vector spaces, 
(holomorphic and anti-holomorphic)

Maps from H+ to the field of complex numbers are analytic. (consider the 
exponential map on a complexified lie algebra)



The Lie Algebra  

Let J be the generators of the rotations, and K be the generators of the boosts. 
The commutators are:

If we make linear combinations:

Hence:

And thus by the Unitarian trick, we can study reps of SO(1,3) via reps of SU(2)



(Holomorphic) Representations of 

This is a semi-simple Lie algebra (sl(2,C) is simple), so any rep can be built as 
a direct sum of irreps. We have choices of tensor product representation:

We will use the representation that assigns the following:

Where each       is (if we so choose) an irrep of su(2). The indices (n,m) will 
classify the representations by dimension and (as we will see) the fields by 
their spin.



Representation theory of su(2)
Let S be the generators of an arbitrary, finite dimensional rep of su(2).

The Cartan sub-algebra                   allows us to form a basis such that

This implies that the dimension of the representation is (2s+1)=number of 
non-zero eigenvalues of S_z. 

Hence the value “s” must come in half-integer form: 

So the rep defined by is (2m+1)(2n+1) dimensional 



Restrictions on the pair (n,m) 

To consider full Lorentz invariance, we impose time reversal and parity 
symmetry:

One finds under parity transformation:

So that under this symmetry. Hence we need symmetric 
representations of the form:

In general, the product representation is not irreducible:

(Clebsch-Gordon decomposition)

Let’s now consider the most important representations:



The Scalar (0,0) or The Trivial Representation

Scalars transform trivially under action of the Lorentz group:

Thus any Lagrangian that goes as (for some power p) has 
hope of being manifestly Lorentz invariant.

To make it Poincare invariant requires imposing extra transformation rules 

Examples:

• Higgs

• Numerous excitations in 1-d condensed matter systems



The Dirac Fermion

The representation decomposes into , a 4-dimensional rep 
(not the defining representation). 

Weyl fermions transform as:

where θ (ω) parametrizes the rotation(boost)

Define the Dirac spinor 

If we restrict θ=zero and evaluate the explicit form of these transformations 
using ω=arctanh(β) and the Einstein energy relations, we arrive at the Dirac eq.



The Massive Vector Field (defining rep)

This representation decomposes into , which is the 
defining representation, of dimension 4.

One finds that the field equations are

This is distinct from the massless case, in which there are only two 
degrees of freedom. The massive field has longitudinal modes with no 
angular momentum. It has no gauge freedom.

Examples: 

• W and Z bosons

• Composite particles (right)

• Cooper pairs in BCS theory



The Anti-Symmetric Tensor Field 

This rep decomposes into which acts on the space of traceless, anti-
symmetric tensor fields.

There are 6 degrees of freedom, just as with the tensor  of Maxwell’s formalism. 

The field satisfies the following relations:

The second relation is a statement that the 2-form is “closed” (dF=0), which by Poincare's lemma, means it 
can be expressed uniquely (locally) via an exact 1-form A (where F=dA). In our context, this means that F is 
the curvature tensor of a massless vector field with gauge freedom.

The field equations for A are much different than the massive case:



The Poincaré Algebra

Let be the generators of spacetime translations, and             an 
antisymmetric tensor (relativistic angular momentum) that satisfies the 
following:

Then we have:

There are two Casimir operators of the Poincare Algebra:

and where is the Pauli-Lubanski vector



Casimir invariants of the Poincare Algebra

One can evaluate W2 in the rest frame to find that it is proportional to 
the squared angular momentum (and thus, the identity). In the rest 
frame, for this to be non-zero implies a definite spin of the particle/field.

For the arbitrary (n,m) rep, this involves calculating

Using the tracelessness of the individual J’s, and the property:

One finds that j=m+n

Hence the spin of a relativistic field is specified uniquely by the 
finite dimensional representation of the lie algebra 
with which it is associated.



Wigner’s Classification

Casimir invariants of Poincaré group are:

3 cases:

1. Massive

2. Massless, P0 nonzero:

3. Massless, all components of P are zero:



Case 1: Massive fields

The first Casimir invariant is trivially

Consider the rest frame: P and W are well defined:

This form is obvious, since the form of P puts heavy restrictions on W

The eigenspace of the momentum operator is, as we have seen, a 
representation of SU(2)

Hence massive fields are classified by irreps of SU(2) that determines 
spin



Case 2: Massless fields with momentum

For a massless propagating field (like the photon) we may use a 
momentum operator:

We find that the Pauli-Lubanski vector has the exact form

It follows that and thus we may choose W to 
be proportional to P, with proportionality constant “h” dubbed the 
helicity operator.

We see immediately that and can verify it 
commutes with the Poincare algebra. Hence it’s eigenvalues, which come 
in half-integer form, supply a classification of massless fields.



Case 3: Massless field with no momentum

The only finite dimensional unitary solution is the trivial one
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