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1. Properties of the Matrix Exponential

Let A be a real or complex n× n matrix. The exponential of A is defined via its Taylor
series,

eA = I +
∞∑

n=1

An

n!
, (1)

where I is the n×n identity matrix. The radius of convergence of the above series is infinite.
Consequently, eq. (1) converges for all matrices A. In these notes, we discuss a number of
key results involving the matrix exponential and provide proofs of three important theorems.
First, we consider some elementary properties.

Property 1: If
[
A , B

]
≡ AB − BA = 0, then

eA+B = eAeB = eBeA . (2)

This result can be proved directly from the definition of the matrix exponential given by
eq. (1). The details are left to the ambitious reader.

Remarkably, the converse of property 1 is FALSE. One counterexample is sufficient. Con-
sider the 2× 2 complex matrices

A =

(
0 0
0 2πi

)

, B =

(
0 0
1 2πi

)

. (3)

An elementary calculation yields

eA = eB = eA+B = I , (4)

where I is the 2 × 2 identity matrix. Hence, eq. (2) is satisfied. Nevertheless, it is a simple
matter to check that AB 6= BA, i.e., [A , B] 6= 0.

Indeed, one can use the above counterexample to construct a second counterexample that
employs only real matrices. Here, we make use of the well known isomorphism between the
complex numbers and real 2× 2 matrices, which is given by the mapping

z = a+ ib 7−→

(
a b

−b a

)

. (5)

It is straightforward to check that this isomorphism respects the multiplication law of two
complex numbers. Using eq. (5), we can replace each complex number in eq. (3) with the
corresponding real 2× 2 matrix,

A =







0 0 0 0
0 0 0 0
0 0 0 2π
0 0 −2π 0







, B =







0 0 0 0
0 0 0 0
1 0 0 2π
0 1 −2π 0







.
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One can again check that eq. (4) is satisfied, where I is now the 4×4 identity matrix, whereas
AB 6= BA as before.

It turns out that a small modification of Property 1 is sufficient to avoid any such coun-
terexamples.

Property 2: If et(A+B) = etAetB = etBetA, where t ∈ (a, b) (where a < b) lies within some
open interval of the real line, then it follows that [A , B] = 0.

Property 3: If S is a non-singular matrix, then for any matrix A,

exp
{
SAS−1

}
= SeAS−1 . (6)

The above result can be derived simply by making use of the Taylor series definition [cf. eq. (1)]
for the matrix exponential.

Property 4: If [A(t) , dA/dt] = 0, then

d

dt
eA(t) = eA(t)dA(t)

dt
=

dA(t)

dt
eA(t) .

This result should be self evident since it replicates the well known result for ordinary
(commuting) functions. Note that Theorem 2 below generalizes this result in the case of
[A(t) , dA/dt] 6= 0

Property 5: If
[
A , [A , B]

]
= 0, then eA B e−A = B + [A , B].

To prove this result, we define

B(t) ≡ etABe−tA ,

and compute

dB(t)

dt
= AetABe−tA − etABe−tAA = [A , B(t)] ,

d2B(t)

dt2
= A2etABe−tA − 2AetABe−tAA+ etABe−tAA2 =

[
A , [A , B(t)]

]
.

By assumption,
[
A , [A , B]

]
= 0, which must also be true if one replaces A → tA for any

number t. Hence, it follows that
[
A , [A , B(t)]

]
= 0, and we can conclude that d2B(t)/dt2 =

0. It then follows that B(t) is a linear function of t, which can be written as

B(t) = B(0) + t

(
dB(t)

dt

)

t=0

.

Noting that B(0) = B and (dB(t)/dt)t=0 = [A , B], we end up with

etA B e−tA = B + t[A , B] . (7)

By setting t = 1, we arrive at the desired result. If the double commutator does not vanish,
then one obtains a more general result, which is presented in Theorem 1 below.
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If
[
A , B

]
6= 0, the eAeB 6= eA+B. The general result is called the Baker-Campbell-

Hausdorff formula, which will be proved in Theorem 4 below. Here, we shall prove a somewhat
simpler version,

Property 6: If
[
A , [A , B]

]
=

[
B , [A , B]

]
= 0, then

eAeB = exp
{
A+B + 1

2
[A , B]

}
. (8)

To prove eq. (8), we define a function,

F (t) = etAetB .

We shall now derive a differential equation for F (t). Taking the derivative of F (t) with
respect to t yields

dF

dt
= AetAetB + etAetB B = AF (t) + etABe−tAF (t) =

{
A+B + t[A , B]

}
F (t) , (9)

after noting that B commutes with eBt and employing eq. (7). By assumption, both A and
B, and hence their sum, commutes with [A , B]. Thus, in light of Property 4 above, it follows
that the solution to eq. (9) is

F (t) = exp
{
t(A+B) + 1

2
t2[A , B]

}
F (0) .

Setting t = 0, we identify F (0) = I, where I is the identity matrix. Finally, setting t = 1
yields eq. (8).

Property 7: For any matrix A,

det expA = exp
{
TrA

}
. (10)

If A is diagonalizable, then one can use Property 3, where S is chosen to diagonallize A.
In this case, D = SAS−1 = diag(λ1 , λ2 , . . . , λn), where the λi are the eigenvalues of A
(allowing for degeneracies among the eigenvalues if present). It then follows that

det eA =
∏

i

eλi = eλ1+λ2+...+λn = exp
{
TrA

}
.

However, not all matrices are diagonalizable. One can modify the above derivation by
employing the Jordan canonical form. But, here I prefer another technique that is applicable
to all matrices whether or not they are diagonalizable. The idea is to define a function

f(t) = det eAt ,

and then derive a differential equation for f(t). If |δt/t| ≪ 1, then

det eA(t+δt) = det(eAteAδt) = det eAt det eAδt = det eAt det(I + Aδt) , (11)

after expanding out eAδt to linear order in δt.
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We now consider

det(I + Aδt) = det








1 + A11δt A12δt . . . A1nδt
A21δt 1 + A22δt . . . A2nδt

...
...

. . .
...

An1δt An2δt . . . 1 + Annδ








= (1 + A11δt)(1 + A22δt) · · · (1 + Annδt) +O
(
(δt)2

)

= 1 + δt(A11 + A22 + · · ·+ Ann) +O
(
(δt)2

)
= 1 + δtTrA +O

(
(δt)2

)
.

Inserting this result back into eq. (11) yields

det eA(t+δt) − det eAt

δt
= TrA det eAt +O(δt) .

Taking the limit as δt → 0 yields the differential equation,

d

dt
det eAt = TrA det eAt . (12)

The solution to this equation is
ln det eAt = tTrA , (13)

where the constant of integration has been determined by noting that (det eAt)t=0 = det I = 1.
Exponentiating eq. (13), we end up with

det eAt = exp
{
tTrA

}
.

Finally, setting t = 1 yields eq. (10).
Note that this last derivation holds for any matrix A (including matrices that are singular

and/or are not diagonalizable).

Remark: For any invertible matrix function A(t), Jacobi’s formula is

d

dt
detA(t) = detA(t) Tr

(

A−1(t)
dA(t)

dt

)

. (14)

Note that for A(t) = eAt, eq. (14) reduces to eq. (12) derived above.

2. Four Important Theorems Involving the Matrix Exponential

The adjoint operator adA, which is a linear operator acting on the vector space of n× n
matrices, is defined by

adA(B) = [A,B] ≡ AB − BA . (15)

Note that
(adA)

n(B) =
[
A, · · · [A, [A,B]] · · ·

]

︸ ︷︷ ︸

n

(16)

involves n nested commutators.
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Theorem 1:

eABe−A = exp(adA)(B) ≡

∞∑

n=0

1

n!
(adA)

n(B) = B + [A,B] + 1
2
[A, [A,B]] + · · · . (17)

Proof: Define
B(t) ≡ etABe−tA , (18)

and compute the Taylor series of B(t) around the point t = 0. A simple computation yields
B(0) = B and

dB(t)

dt
= AetABe−tA − etABe−tAA = [A,B(t)] = adA(B(t)) . (19)

Higher derivatives can also be computed. It is a simple exercise to show that:

dnB(t)

dtn
= (adA)

n(B(t)) . (20)

Theorem 1 then follows by substituting t = 1 in the resulting Taylor series expansion of B(t).
We now introduce two auxiliary functions that are defined by their power series:

f(z) =
ez − 1

z
=

∞∑

n=0

zn

(n+ 1)!
, |z| < ∞ , (21)

g(z) =
ln z

z − 1
=

∞∑

n=0

(1− z)n

n + 1
, |1− z| < 1 . (22)

These functions satisfy:

f(ln z) g(z) = 1 , for |1− z| < 1 , (23)

f(z) g(ez) = 1 , for|z| < ∞ . (24)

Theorem 2:

eA(t) d

dt
e−A(t) = −f(adA)

(
dA

dt

)

, (25)

where f(z) is defined via its Taylor series in eq. (21). Note that in general, A(t) does not
commute with dA/dt. A simple example, A(t) = A + tB where A and B are independent of
t and [A,B] 6= 0, illustrates this point. In the special case where [A(t), dA/dt] = 0, eq. (25)
reduces to

eA(t) d

dt
e−A(t) = −

dA

dt
, if

[

A(t),
dA

dt

]

= 0 . (26)

Proof: Define

B(s, t) ≡ esA(t) d

dt
e−sA(t) , (27)
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and compute the Taylor series of B(s, t) around the point s = 0. It is straightforward to
verify that B(0, t) = 0 and

dnB(s, t)

dsn

∣
∣
∣
∣
s=0

= −(adA(t))
n−1

(
dA

dt

)

, (28)

for all positive integers n. Assembling the Taylor series for B(s, t) and inserting s = 1 then
yields Theorem 2. Note that if [A(t), dA/dt] = 0, then (dnB(s, t)/dsn)s=0 = 0 for all n ≥ 2,
and we recover the result of eq. (26).

Theorem 3:
d

dt
e−A(t) = −

∫ 1

0

e−sA
dA

dt
e−(1−s)A ds . (29)

This integral representation is an alternative version of Theorem 2.

Proof: Consider

d

ds

(
e−sA e−(1−s)B

)
= −Ae−sA e−(1−s)B + e−sA e−(1−s)BB

= e−sA(B − A)e−(1−s)B . (30)

Integrate eq. (30) from s = 0 to s = 1.

∫ 1

0

d

ds

(
e−sA e−(1−s)B

)
= e−sA e−(1−s)B

∣
∣
∣
∣

1

0

= e−A − e−B . (31)

Using eq. (30), it follows that:

e−A − e−B =

∫ 1

0

ds e−sA(B − A)e−(1−s)B . (32)

In eq. (32), we can replace B −→ A + hB, where h is an infinitesimal quantity:

e−A − e−(A+hB) = h

∫ 1

0

ds e−sABe−(1−s)(A+hB) . (33)

Taking the limit as h → 0,

lim
h→0

1

h

[
e−(A+hB) − e−A

]
= −

∫ 1

0

ds e−sABe−(1−s)A . (34)

Finally, we note that the definition of the derivative can be used to write:

d

dt
e−A(t) = lim

h→0

e−A(t+h) − e−A(t)

h
. (35)

Using

A(t + h) = A(t) + h
dA

dt
+O(h2) , (36)
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it follows that:

d

dt
e−A(t) = lim

h→0

exp

[

−

(

A(t) + h
dA

dt

)]

− exp[−A(t)]

h
. (37)

Thus, we can use the result of eq. (34) with B = dA/dt to obtain

d

dt
e−A(t) = −

∫ 1

0

e−sA
dA

dt
e−(1−s)A ds , (38)

which is the result quoted in Theorem 3.

Second proof of Theorem 2: One can now derive Theorem 2 directly from Theorem 3.
Multiply eq. (29) by eA(t) to obtain:

eA(t) d

dt
e−A(t) = −

∫ 1

0

e(1−s)A dA

dt
e−(1−s)A ds . (39)

Using Theorem 1 [see eq. (17)],

eA(t) d

dt
e−A(t) = −

∫ 1

0

exp
[
ad(1−s)A

]
(
dA

dt

)

ds

= −

∫ 1

0

e(1−s)adA

(
dA

dt

)

ds . (40)

Changing variables s −→ 1− s, it follows that:

eA(t) d

dt
e−A(t) = −

∫ 1

0

es adA
(
dA

dt

)

ds . (41)

The integral over s is trivial, and one finds:

eA(t) d

dt
e−A(t) =

1− e adA

adA

(
dA

dt

)

= −f(adA)

(
dA

dt

)

, (42)

which coincides with Theorem 2.

Theorem 4: The Baker-Campbell-Hausdorff (BCH) formula

ln
(
eAeB

)
= B +

∫ 1

0

g [exp(t adA) exp(adB)] (A) dt , (43)

where g(z) is defined via its Taylor series in eq. (22). Since g(z) is only defined for |1−z| < 1,
it follows that the BCH formula for ln

(
eAeB

)
converges provided that ‖eAeB −I‖ < 1, where

I is the identity matrix and ‖ · · · ‖ is a suitably defined matrix norm. Expanding the BCH
formula, using the Taylor series definition of g(z), yields:

eAeB = exp
(
A+B + 1

2
[A,B] + 1

12
[A, [A,B]] + 1

12
[B, [B,A]] + . . .

)
, (44)
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assuming that the resulting series is convergent. An example where the BCH series does not
converge occurs for the following elements of SL(2,R):

M =

(
−e−λ 0
0 −eλ

)

= exp

[

λ

(
1 0
0 −1

)]

exp

[

π

(
0 1

−1 0

)]

, (45)

where λ is any nonzero real number. It is easy to prove1 that no matrix C exists such that
M = expC. Nevertheless, the BCH formula is guaranteed to converge in a neighborhood of
the identity of any Lie group.

Proof of the BCH formula: Define

C(t) = ln(etAeB) . (46)

or equivalently,
eC(t) = etAeB . (47)

Using Theorem 1, it follows that for any complex n× n matrix H ,

exp
[
adC(t)

]
(H) = eC(t)He−C(t) = etAeBHe−tAe−B

= etA [exp(adB)(H)] e−tA

= exp(adtA) exp(adB)(H) . (48)

Hence, the following operator equation is valid:

exp
[
adC(t)

]
= exp(t adA) exp(adB) , (49)

after noting that exp(adtA) = exp(t adA). Next, we use Theorem 2 to write:

eC(t) d

dt
e−C(t) = −f(adC(t))

(
dC

dt

)

. (50)

However, we can compute the left-hand side of eq. (50) directly:

eC(t) d

dt
e−C(t) = etAeB

d

dt
e−Be−tA = etA

d

dt
e−tA = −A , (51)

1The characteristic equation for any 2× 2 matrix A is given by

λ2 − (Tr A)λ+ det A = 0 .

Hence, the eigenvalues of any 2 × 2 traceless matrix A ∈ sl(2,R) [that is, A is an element of the Lie algebra
of SL(2,R)] are given by λ± = ±(−det A)1/2. Then,

Tr eA = exp(λ+) + exp(λ−) =

{

2 cosh |det A|1/2 , if det A ≤ 0 ,

2 cos |det A|1/2 , if det A > 0 .

Thus, if det A ≤ 0, then Tr eA ≥ 2, and if det A > 0, then −2 ≤ Tr eA < 2. It follows that for any
A ∈ sl(2,R), Tr eA ≥ −2. For the matrix M defined in eq. (45), Tr M = −2 coshλ < −2 for any nonzero
real λ. Hence, no matrix C exists such that M = expC.
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since B is independent of t, and tA commutes with d

dt
(tA). Combining the results of eqs. (50)

and (51),

A = f(adC(t))

(
dC

dt

)

. (52)

Multiplying both sides of eq. (52) by g(exp adC(t)) and using eq. (24) yields:

dC

dt
= g(exp adC(t))(A) . (53)

Employing the operator equation, eq. (49), one may rewrite eq. (53) as:

dC

dt
= g(exp(t adA) exp(adB))(A) , (54)

which is a differential equation for C(t). Integrating from t = 0 to t = T , one easily solves
for C. The end result is

C(T ) = B +

∫
T

0

g(exp(t adA) exp(adB))(A) dt , (55)

where the constant of integration, B, has been obtained by setting T = 0. Finally, setting
T = 1 in eq. (55) yields the BCH formula.

Finally, we shall use eq. (43) to obtain the terms exhibited in eq. (44). In light of the
series definition of g(z) given in eq. (22), we need to compute

I − exp(t adA) exp(adB) = I − (I + t adA + 1
2
t2 ad2

A)(I + adB + 1
2
ad2

B)

= −adB − t adA − t adA adB − 1
2
ad2

B − 1
2
t2 ad2

A , (56)

and
[
I − exp(t adA) exp(adB)

]2
= ad2

B
+ t adAadB + t adBadA + t2 ad2

A
, (57)

after dropping cubic terms and higher. Hence, using eq. (22),

g(exp(t adA) exp(adB)) = I− 1
2
adB−

1
2
t adA−

1
6
t adA adB+

1
3
t adB adA+

1
12
ad2

B+
1
12
t2 ad2

A . (58)

Noting that adA(A) = [A,A] = 0, it follows that to cubic order,

B +

∫ 1

0

g(exp(t adA) exp(adB))(A) dt = B + A− 1
2
[B,A]− 1

12

[
A, [B,A]

]
+ 1

12

[
B, [B,A]

]

= A+B + 1
2
[A,B] + 1

12

[
A, [A,B]

]
+ 1

12

[
B, [B,A]

]
,

(59)

which confirms the result of eq. (44).
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