DUE: THURSDAY, May 25, 2017

1. (a) A homomorphism from the vector space \mathbb{R}^3 to the set of traceless Hermitian 2×2 matrices is defined by $\vec{\boldsymbol{x}} \to \vec{\boldsymbol{x}} \cdot \vec{\boldsymbol{\sigma}}$, where $\vec{\boldsymbol{\sigma}} = (\sigma_1, \sigma_2, \sigma_3)$ are the Pauli matrices. First, show that $\det(\vec{\boldsymbol{x}} \cdot \vec{\boldsymbol{\sigma}}) = -|\vec{\boldsymbol{x}}|^2$. Second, prove the identity:

$$x_i = \frac{1}{2} \text{Tr} \left(\vec{\boldsymbol{x}} \cdot \vec{\boldsymbol{\sigma}} \, \sigma_i \right).$$

This identity provides the inverse transformation from the set of traceless 2×2 Hermitian matrices to the vector space \mathbb{R}^3 .

- (b) Let $U \in SU(2)$. Show that $U \vec{x} \cdot \vec{\sigma} U^{-1} = \vec{y} \cdot \vec{\sigma}$ for some vector \vec{y} . Using the results of part (a), prove that an element of the rotation group exists such that $\vec{y} = R\vec{x}$ and determine an explicit form for $R \in SO(3)$. Display a homomorphism from SU(2) onto SO(3) and prove that $SO(3) \cong SU(2)/\mathbb{Z}_2$.
- (c) The Lie group SU(1,1) is defined as the group of 2×2 matrices V that satisfy $V\sigma_3V^{\dagger} = \sigma_3$ and det V = 1. (Note that V is not a unitary matrix.) The Lie group SO(2,1) is the group of transformations on vectors $\vec{x} \in \mathbb{R}^3$ (with determinant equal to one) that preserves $x_1^2 + x_2^2 x_3^2$. Display the homomorphism from SU(1,1) onto SO(2,1) and compare with part (b).
- 2. The Möbius group is defined as the set of linear fractional transformations:

$$M = \left\{ m(z) = \frac{az+b}{cz+d}, \quad ad-bc = 1 \right\},\,$$

where a, b, c, d and z are complex numbers.

(a) Show that the mapping $f: SL(2,\mathbb{C}) \to M$ defined by:

$$f: \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto m(z)$$

is a group homomorphism. [HINT: the multiplication law on M is defined by the composition of functions.]

- (b) Prove that M is not simply connected and identify its universal covering group.
- 3. SO(3) can be represented by a ball of radius π with antipodal points identified. A point in the SO(3) group manifold is specified by a vector $\vec{\xi}$ with $|\vec{\xi}| \leq \pi$. Thus, the SO(3) manifold is parameterized by $\vec{\xi} = (\xi, \theta, \phi)$, where (θ, ϕ) are the spherical angles (such that $0 \leq \theta \leq \pi$ and $0 \leq \phi < 2\pi$) and ξ is the magnitude of the vector $\vec{\xi}$.

[NOTE: This is equivalent to the angle-and-axis parameterization where the rotation angle is ξ and the rotation axis, $\hat{\xi}$, is specified by a polar angle θ and an azimuthal angle ϕ .]

(a) Show that the invariant integration measure of SO(3) is given by

$$d\mu(\vec{\xi}) = \det c(\xi) \prod_i d\xi_i$$

where the matrix elements of $c(\xi)$ are

$$c(\xi)_{nk} = \frac{1}{2} \epsilon_{\ell nj} R_{\ell i}^{-1} \frac{dR_{ij}}{d\xi_k} ,$$

and $R_{ij} \equiv R_{ij}(\vec{\xi})$ is the SO(3) matrix given in problem 7(b) of problem set 2.

(b) Evaluate the expression for $d\mu(\vec{\xi})$ obtained in part (a) and show that $d\mu(\vec{\xi}) = 2(1 - \cos \xi) \sin \theta d\theta d\phi d\xi.$

HINT: First evaluate $d\mu(\vec{\xi})$ in terms of Cartesian coordinates ξ_1 , ξ_2 and ξ_3 . Convert to spherical coordinate (ξ, θ, ϕ) at the very end of the calculation.

- (c) Compute the total volume of SO(3). Compare this with the total volume of SU(2).
- 4. Consider a Lie group of transformations G acting on a manifold M. That is, for every $g \in G$, we have gx = y for some $x, y \in M$.
- (a) Let H be the set of all transformations in G that map a given point $x \in M$ into itself. Show that H is a subgroup. H has at least three names in the mathematical literature: the little group, the isotropy group, or the stability group of the point x.
- (b) Consider the submanifold of M defined by $\{gx \mid g \in G\}$, for fixed $x \in M$. This is called the *orbit* through x with respect to G. Show that there is a one-to-one correspondence between the points of the orbit and the set of left cosets of H. Explain why we may conclude that $\{gx \mid g \in G\} = G/H$. Show that the coset space G/H is homogeneous.
- (c) Prove that $S^{n-1} = SO(n)/SO(n-1)$ by considering the action of the rotation group on the point $(1,0,0,\ldots,0) \in \mathbb{R}^n$.
- (d) Prove that $S^{2n-1} = U(n)/U(n-1)$ by considering the action of the U(n) matrices on the point $(1,0,0,\ldots,0) \in \mathbb{C}^n$.
- (e) Complex projective space \mathbb{CP}^n is defined as the space of complex lines in \mathbb{C}^{n+1} through the origin. That is, \mathbb{CP}^n consists of the set of vectors in \mathbb{C}^{n+1} (omitting the zero vector) where we identify $(z_0, z_1, \ldots, z_n) \sim \lambda(z_0, z_1, \ldots, z_n)$, for any nonzero complex number λ . Without loss of generality, we can restrict our considerations to the vectors $\vec{\boldsymbol{v}} \in \mathbb{C}^{n+1}$ such that $\vec{\boldsymbol{v}} \cdot \vec{\boldsymbol{v}}^* = 1$. Show that $\mathrm{U}(1) \otimes \mathrm{U}(n)$ is the little group of the point $z = (1,0,0,\ldots,0) \in \mathbb{CP}^n$, and that \mathbb{CP}^n is the orbit through z with respect to $\mathrm{U}(n+1)$. Conclude that $\mathbb{CP}^n = \mathrm{U}(n+1)/\mathrm{U}(1) \otimes \mathrm{U}(n)$.
- (f) Real projective space \mathbb{RP}^n can be defined analogously to \mathbb{CP}^n of part (e) by replacing the field of complex numbers with the field of real numbers. What coset space can be identified with \mathbb{RP}^n ?
 - (g) In parts (c)–(f), check that $\dim(G/H) = \dim G \dim H$.

- (h) $[EXTRA\ CREDIT:]\ \mathbb{CP}^n$ is a manifold of n complex (or 2n real) dimensions. \mathbb{CP}^1 is homeomorphic to which well-known two-dimensional real manifold?
- 5. Let A be an even-dimensional complex antisymmetric $2n \times 2n$ matrix, where n is a positive integer. We define the *pfaffian* of A, denoted by pf A, by:

$$pf A = \frac{1}{2^n n!} \sum_{p \in S_{2n}} (-1)^p A_{i_1 i_2} A_{i_3 i_4} \cdots A_{i_{2n-1} i_{2n}}, \qquad (1)$$

where the sum is taken over all permutations

$$p = \begin{pmatrix} 1 & 2 & \cdots & 2n \\ i_1 & i_2 & \cdots & i_{2n} \end{pmatrix}$$

and $(-1)^p$ is the sign of the permutation $p \in S_{2n}$. If A is an odd-dimensional complex antisymmetric matrix, the corresponding pfaffian is defined to be zero.

(a) By explicit calculation, show that ¹

$$\det A = (\operatorname{pf} A)^2, \tag{2}$$

for any 2×2 and 4×4 complex antisymmetric matrix A.

- (b) Prove that the determinant of any odd-dimensional complex antisymmetric matrix vanishes. As a result, the definition of the pfaffian in the odd-dimensional case is consistent with the result of eq. (2).
- (c) Given an arbitrary $2n \times 2n$ complex matrix B and complex antisymmetric $2n \times 2n$ matrix A, use the definition of the pfaffian given in eq. (1) to prove the following identity:

$$\operatorname{pf}(BAB^T) = \operatorname{pf} A \det B$$
.

(d) A complex $2n \times 2n$ matrix S is called *symplectic* if $S^\mathsf{T}JS = J$, where S^T is the transpose of S and

$$J \equiv \left(\begin{array}{cc} \mathbb{O} & \mathbb{1} \\ -\mathbb{1} & \mathbb{O} \end{array} \right) \,,$$

where $\mathbb{1}$ is the $n \times n$ identity matrix and \mathbb{O} is the $n \times n$ zero matrix. Prove that the set of $2n \times 2n$ complex symplectic matrices, denoted by $\mathrm{Sp}(n,\mathbb{C})$, is a matrix Lie group² [i.e., it is a topologically closed subgroup of $\mathrm{GL}(2n,\mathbb{C})$].

(e) Prove that if S is a symplectic matrix, then $\det S = 1$.

HINT: It is very easy to prove that $\det S = \pm 1$ by taking the determinant of the equation $S^{\mathsf{T}}JS = J$. To prove that there are no symplectic matrices with $\det S = -1$, use the results of part (c).

(f) Using the results of parts (d) and (e), prove that the matrix Lie groups $\mathrm{Sp}(1,\mathbb{C})$ and $\mathrm{SL}(2,\mathbb{C})$ are isomorphic.

¹In fact, eq. (2) holds for all complex antisymmetric $2n \times 2n$ matrices, where n is any positive number. A general proof will be provided in a class handout.

²Warning: many authors denote the group of $2n \times 2n$ complex symplectic matrices by $\mathrm{Sp}(2n,\mathbb{C})$.