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1. The two-dimensional Poincaré group P(2) is the group consisting of two-dimensional

Lorentz transformations [i.e., transformations on 2-vectors (¢) that preserve x? — c*t?] and

translations in time and space. P(2) can be represented by 3 x 3 matrices acting linearly on
the column vector, (?), in analogy with the two-dimensional Euclidean group, E(2), worked

out in class.

The two-dimensional Poincaré group P(2) is the group consisting of two-dimensional Lorentz
transformations and spacetime translations. The most general two-dimensional Lorentz trans-
formation (which preserves the quantity x® — ¢®t?) can be written in the following form:

ct cosh & sinh & [ct
(a:) — (sinh§ coshf) (:)s) ’ (1)

1 v

. Y
S he =12
1 —v2/c? 7 sinh & c

To incorporate spacetime translations x — r+xy and t — t+t,, we can employ 3 X 3 matrices,

where!

cosh ¢ =

ct cosh & sinh & cto ct
x| — [ sinh{  cosh¢ Zo x| . (2)
1 0 0 1 1

That is, the most general element of the two-dimensional Poincaré group P(2) is given by:

cosh & sinh & cto
sinh & cosh & T
0 0 1

(a) Find the infinitesimal generators (i.e., differential operators) of the corresponding Lie
algebra, p(2). Work out the commutation relations of p(2).

First, I shall review how the infinitesimal generator was defined in class. Consider a Lie
transformation group G that acts on a manifold M from the left. We define

vt =@ &), (3)

!The parameter ¢ (which is defined as tanh& = v/c, where v is the velocity) is called the rapidity. The
parameterization of the Lorentz transformation given in eq. (1) is convenient since the hyperbolic trigonometric
identity, cosh? ¢ — sinh? ¢ = 1, ensures that 22 — ¢2¢2 is invariant under Lorentz transformations. Note that

(E?SE? ZL‘;}}]}E) is the most general element of the group SO(1,1).



where A = (ay, a9, ...a,) € G acts on & € M such that

O (0; &) = 2", (4)
O'(b; B(@; &) = (b, @); Z), (5)

where m‘(b, @) = (BA) is the multiplication law on the group manifold. In writing eq. (4) we
assume that the identity of the group corresponds to I = (0,0,...,0). It is common practice
to employ a shorthand notation by writing eq. (3) as & = AZ, in which case one can rewrite
eq. (5) as B(AZ) = (BA)Z.

The infinitesimal generators of the Lie transformation group G are introduced by con-
sidering a scalar function f(&) that acts on the manifold M (ie., f : M — M). In the
passive interpretation, eq. (3) represents a change in coordinates on the manifold M. Thus,
f'(®") = f(&), where f’ represents the same function f in terms of the new coordinates.?
Writing &' = AZ, or equivalently & = A~'E’, it follows that

f1(&@) = f(A™'), (6)

after dropping the primes on the dummy variable £'. Eq. (6) indicates how the form of the
function f must change by going to the new coordinate system.

We now choose A to be a group element close to the identity. As usual, the coordinates
on the group manifold are chosen such that the identity is located at the origin and is given
by I =(0,0,...,0). Writing A = I+ A, if follows that A = (day,das, ..., d0a,). Then, to first

order we have A™! =1 — §A = (—day, —day, ..., —da,). Hence, working to first order,
. . . di(b: &
(A7'®) = ®(—da; &) ~ d(0; &) + (%) (—da¥). (7)
b=0

We therefore define the quantity,
o 0% (b; T)
(&) = (T> . 0
b=0

Hence, we can rewrite eq. (7) as (A7'&)" ~ 2' — da*ut (&), and therefore

of
oxrt’

FI(@) = f(a' = da"up(F)) = (&) — da"u(F)
That is, the functional form of f changes by
f1(@) — f(&) = 6a" Xy (&) f(Z) ,
where the differential operator

Xu(®) = —uf (@) ©)

2Note that & and &' represent the same physical point on the manifold M, but expressed in different
coordinate systems. Thus, by defining f/(£") = f(&), it follows that f’ represents the function f with respect
to the new coordinates.



is called the infinitesimal generator of Lie group transformations. In class, we noted that the
infinitesimal generators satisfy the same commutations as the Lie algebra of G,

[XZ7X]] = Z'];'Xk7

where this equation should be interpreted as an operator equation that acts on the function
/().

To compute the infinitesimal generators of P(2), we consider eq. (2) for infinitesimal
(cto, o, &), where sinh¢ ~ ¢ and cosh& ~ 1 to first order in £. Then to evaluate eq. (8),

we identify b = (cto, o, &) and & = (ct, x,1). In particular, ®(b; &) in eq. (8) is given by

. 1 & cty ct ct + &x + cty
Ob;E)=1& 1 x x| = | &t + x4+ xg
0 0 1 1 1

Then, eq. (9) yields the infinitesimal generators,

10 ng—g, ng—fg—ctg

Xi=—Ca oz

The commutation relations are easily evaluated:

1 [ & 8
X, Xo] =7 (8t8x a 8x8t) =0

rd* 10 0 x 0 0 10 0
i == (o)~ Fom ot () ~ e~

o2 18(8) ? x 10

X Xl y 1O (9N _ 49 r o 10
KXo, Xs| = cto s+ 50 |7 o T Covot  cot L

where we have assumed that the infinitesimal generators are acting on well-behaved functions
so that the mixed second partial derivatives are equal. Thus, we have established that:

(X1, X5] =0, (X1, X5] = —Xo, [Xo, X3] = — X .

As a check, we can compute the commutation relations of the Lie algebra p(2) by expanding
the P(2) transformation to first order in the group parameters,

1 f cto
5 1 Zo ~1 + Ct0A1 + onQ + 5«43 y
0 O 1



where

0 0 1 0 0 O 0 1 0
A =10 0 0], A, =10 0 1], As=[1 0 0
0 0 0 0 0 O 0 0 O

It is straightforward to verify by matrix multiplication that
[A1, As] =0, (A, As] = — Ay, [Ag, As] = — A . (10)

Thus, we have confirmed that the commutation relations satisfied by the infinitesimal gener-
ators are isomorphic to the Lie algebra p(2), as expected.

(b) Compute the Cartan-Killing form. Show that P(2) is noncompact and non-semisimple.

The Cartan-Killing form is defined in terms of the Cartan metric tensor, g; = fi.fl,, where

the Z’j are the structure constants of the Lie algebra, and there is an implicit sum over the
repeated indices k and ¢. Using eq. (10), we see that the only nonzero structure constants are:

f123 = f213 = _f??l = _fz)}z =—1.
Hence, it follows that only one element of the Cartan metric tensor is nonzero,

933 = farfao + fiaf5i = 2.

That is,
0 0 O
g; =10 0 0
0 0 2

Since g;; is singular (and not negative definite), it follows that P(2) is non-semisimple and
non-compact.

(c) Express the Lie algebra p(2) as a semidirect sum of two abelian subalgebras.

Eq. (10) exhibits the structure of a semidirect sum. Note that A3 generates the Lie algebra of
the two-dimensional Lorentz group, so0(1,1),> and A;, A, generate the Lie algebra of the two-
dimensional group of spacetime translations, t(2). In particular, t(2) is an invariant subalgebra
(or ideal) of p(2), since for B € t(2) and A € p(2) we have [B, A] € t(2) [which implies that
s0(1,1) = p(2)/t(2)]. In contrast, so(1,1) is not an invariant subalgebra of p(2). Hence, p(2)
is the semidirect sum of these two groups,

p(2) =2 (2) » so(1,1).

3Note that SO(1,1) R, via the map (g;’;};g ;g;gg) — ¢, and SO(2)~U(1)=~ R/Z =S0(1,1)/7Z, where R
is the group of real numbers under addition. Hence, so(1,1) = s0(2) = u(1). Indeed, all one-dimensional real
Lie algebras are isomorphic.



2. The Lie algebra of U(2) can be written as a direct sum, u(2) = su(2) @ u(1). As for the
corresponding Lie groups, show that U(2) = SU(2)®U(1)/Z,. How do these results generalize
to U(n) and its Lie algebra u(n)?

The general case of an arbitrary integer n > 2 can be treated as easily as any special case.
Indeed, the Lie algebra of U(n) can be written as a direct sum, u(n) = su(n) & u(l). To
verify this claim, we can make use of egs. (1)—(3) in the class handout entitled Properties of
the Gell-Mann matrices. Consider the n? generators,

(Ef)ij = 6uidnj » (11)
which satisfy the following commutation relations (as is easily verified),
[E}, E'] = 6FE]" — 6]'EY . (12)
The matrices EF also satisfy the hermiticity condition,
(EF) = EL. (13)

Thus, we can use the EF to construct the n? hermitian matrix generators (using the physicist’s
convention) of u(n) by employing suitable linear combinations. The corresponding off-diagonal
hermitian generators are of the form Ef + E}, and —i(E} — Ef) in analogy with the off-diagonal
Gell-Mann matrices. There are n diagonal generators, Ef (¢ = 1,2,...,n; no sum over )
consisting of one non-zero entry occupying the ¢/ element of the matrix. Note that

d Ef=1,
l

where I is the n X n identity matrix. We can identify the traceless generators of su(n) by
defining

1
(F)ij = (E))ij — g5ké5z‘j : (14)

The off-diagonal generators of u(n) and su(n) coincide. Since,
Y F/=0, (15)
¢

it follows that there are only n — 1 independent diagonal generators of su(n). The F} also
satisfy the same commutation relations as the EF [cf. eq. (12)],

[FE, ) = 0bEp — o7 R (16)

Thus, we may choose the diagonal generators of u(n) to consist of I and the n —1 independent
traceless diagonal generators obtained from F}. Note that T commutes with all the other u(n)
generators. Hence I generates a u(1) subalgebra of u(n). Using the (F});; to construct the
n? — 1 hermitian generators of su(n) and appending to it the u(1) generator I, it follows that
the Lie algebra of U(n) can be written as a direct sum, u(n) = su(n) @ u(1).

>



Next, we discuss the relation between the Lie groups U(n) and SU(n)®@U(1). In order
to determine the corresponding group isomorphism, we first note that any element of U(n)
can be written in the form e A, where 0 < # < 27 and A is a unitary n x n matrix of unit
determinant, and any element of SU(n)xU(1) can be written as an ordered pair, (A, e?).

Consider the homomorphism f: SU(n)xU(1)—U(n) that takes (A, e?) — e A, where
A € SU(n) and € € U(1). The kernel of the map f consists of all elements of SU(n)xU(1)
that are mapped onto the identity element I € U(n). Thus, the elements of the kernel must
be of the form (e~ ). In order that Ie~% € SU(n), we must have

det(Te ™) = ™ =1,

It follows that 6 = 27m/n for any integer m, and f(Ie=2mm/n  e2mim/n) — T
We conclude that?

ker f = {(I e72mim/n CoImim/my o for m = 0,1,2,...,n— 1} 2 Z,. (17)

Noting that the image of the map f is Im f = U(n), we can use the fundamental homomor-
phism theorem of group theory that states that for any homomorphism f : G — Im f with
kernel, ker f, we have Im f = G /kerf. Hence, it then follows that

U(n) = SU(n) @ U(1)/Z, .

3. This problem concerns the Lie group SO(4) and its Lie algebra so(4).
(a) Work out the Lie algebra so(4) and verify that so(4) = so(3) @ s0(3).

The defining representation of the Lie algebra so(n) is
so(n) = {A| A€ gl(n,R) such that AT = —A},

where gl(n,R) is the set of all real n x n matrices. Recall that a suitable basis for the
defining representation of so0(3), which consists of all 3 x 3 real antisymmetric matrices, is
(A;)jx = —€ik, where 4, j and k can take on the values 1, 2 and 3. To find a suitable basis
for the defining representation of s0(4), one can generalize the A; of s0(3) by choosing

, where 4,5,k =1,2,3. (18)

Since a 4 x 4 real antisymmetric matrix has six independent parameters, we need to choose
three additional linearly-independent antisymmetric matrices to complete the basis for so(4).

*Recall the discrete group, Z, = {e?™™/"  for m =0,1,2,...,n — 1}. In light of the isomorphism that
identifies {(Ie=2mim/n e2mim/n)  o2mim/n it follows that kerf = Z, as indicated in eq. (17).



We therefore introduce three antisymmetric matrices B; by placing a 1 in one of the non-
diagonal elements of the fourth row (and a corresponding —1 required by the antisymmetry
property of the matrix), with all other elements zero. That is, a suitable basis for so(4) is
given by:

0 0 0 0 0 0 1 0 0-1 0 0
0 0-1 0 0 0 0 0 1 0 0 0

A= 0 1 0 0] Az = -1 0 0 0] As = 0 0 0 0]
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 —1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 —1 0 0 0 0

B = 0 0 0 o0} B, = 0 0 0 o0f" B; = 0 0 0 —1
1 0 0 0 0 1 0 0 0 0 1 0

One can easily verify that the six generators of s0(4) satisfy the following commutation rela-
tions:

[Ai s Aj] = €Ak, (B, B;| = €ij Ak, [A;, Bj] = €1 By - (19)

Note that the commutation relations satisfied by the A4; are precisely those of s0(3), which is
not surprising in light of eq. (18).

The form of the commutators given in eq. (19) is not completely transparent. To under-
stand the implications of eq. (19), it is convenient to define a new set of s0(4) generators that
are real linear combinations of the A; and B;. Thus, we define,

X, =3(A+B), Y= 1(A - By), where 1 =1,2,3. (20)

Using eq. (19), it is a simple matter to work out the commutation relations among the X;
and Y,
(X, Xj] = € Xk, Yi, Y] = €Y, [Xi, Y;]=0. (21)
Thus, we have succeeding in writing the s0(4) commutation relations in such a way that the
generators {X;} and {Y;} are decoupled. In particular, the {X;} and {Y;} each satisfy so(3)
commutation relations. Hence, s0(4) is a direct sum of two independent so(3) Lie algebras.
That is,’
50(4) = s50(3) ®so(3). (22)

(b) What is the universal covering group of SO(4)? What is the center of SO(4)7 Identify
the adjoint group Ad(SO(4)).

Since the universal covering group of SO(3) is SU(2), we can use eq. (22) to conclude that the
universal covering group of SO(4) is SU(2 )® SU(2).5 In particular,

SO(4) = SU(2) ® SU(2)/Z, . (23)

°Since su(2) 2 s0(3) as Lie algebras, we can equally well write s0(4) = su(2) & su(2).
6Since the Lie group is obtained by exponentiation of the Lie algebra, a direct sum of Lie algebras correspond
to a direct product of Lie groups.



To justify eq. (23), consider the centers of SO(4) and SU(2) ® SU(2). The center of SO(4)
consists of all orthogonal matrices of unit determinant that are multiples of the identity. There
are only two such matrices, 1444 and —1 4.4, where 14,4 is the 4 x 4 identity matrix. Hence,

Z(SO(4)) =Zs .
The center of SU(2) is {loxa, —1ox2} = Zs so that
Z(SU(2) @ SU(2)) =Zy R Zs .

Thus, only one Z, factor can appear in eq. (23).
Finally, the adjoint group by definition has a trivial center. Thus, the adjoint group of
SO(4) can be expressed in a number of equivalent forms,

SO(4)/Zs = SO(3) @ SO(3) = SU(2) ® SU(2)/Zs @ Zs ,

where we have made use of the well-known isomorphism, SO(3) = SU(2)/Z,. In particular,
SO(3) ® SO(3) has a trivial center since SO(3) has a trivial center.

(c) Calculate the Killing form of so(4) and verify that this Lie algebra is semisimple and
compact.

The Cartan-Killing form can be expressed in terms of the Lie algebra structure constants,
_pd gc
Gab = Jac fbd : (24)

In this expression, the indices a, b, ¢ and d range over 1,2,...,6, corresponding to the six
generators of s0(4). It is easiest to evaluate g, in the basis {X;, Y} [cf, egs. (20) and (21)].
In this basis,
€ijk » fora=1,b=j, and d =k,
d = €ijk » fora=14+3,b=35+3, and d=k+ 3,
0, otherwise ,

where 7, j and k range over 1, 2 and 3. Plugging into eq. (24) yields

Gab = _25ab7

which indicates that so(4) is a semi-simple and compact Lie algebra.



4. A Lie algebra g is defined by the commutation relations of the generators,

[6117 eb] = f(ibec‘

Consider the finite-dimensional matrix representations of the e,. We shall denote the cor-
responding generators in the adjoint representation by F, and in an arbitrary irreducible
representation R by R,. The dimension of the adjoint representation, d, is equal to the
dimension of the Lie algebra g, while the dimension of R will be denoted by d.

(a) Show that the Cartan-Killing metric g4, can be written as g, = Tr(F, Fy).

The Cartan-Killing metric can be expressed in terms of the structure constants as follows,

_ kgt
i = JieJjk -

On the other hand, matrix elements of the adjoint representation are given by:
(E:Y e = fh,
where j labels the rows and k labels the columns of the matrices F;. Therefore,

Te(FEy) = (F)*(F;)'s = fiofje = 935 -

(b) If g is a simple real compact Lie algebra, prove that for any irreducible representation R,
Tl"(RaRb) = CRgaba

where ¢y, is called the index of the irreducible representation R.

Consider a d-dimensional Lie algebra g, whose generators are represented by the matrices R,.
These matrices satisfy the Lie algebra commutation relations,

[R., Ry] = f5,Re, where a,b,c =1,2,...,d. (25)
We first note the following identity:

To{[R, BB} = Te{ Ru[Ro, R} (26)
The proof of eq. (26) is straightforward:

T{[Ry, R R} = Te{ (RuRy — RyRa)R,} = Te(R,RyR,) — Te(RyR,R)
= Tr(RRyR.) — Tr(R,R.Ry) = Tr{ Ry(RyR. — R.Ry) } = Tr{Ru[Ry, R},
after using the cyclic properties of the trace. Making use of eq. (25) in eq. (26) yields:
o Tr(RaR.) = fir. Tr(RqRa) . (27)

9



To make further progress, recall that fu. = gaafs is totally antisymmetric under the
interchange of any pair of indices a, b and c. It follows that

flflc = gadfabc s (28)

where g is the inverse Cartan metric tensor. It is convenient to multiply both sides of eq. (27)
by ¢°* to obtain:
9° fa Tr(RaR:) = g fi. Tr(Ro Ra) (29)

Using eq. (28) and the antisymmetry properties of fupn,

ea rd

9 fap = 9°°9" Frav = 99" farn = 9" fi
Inserting this result into eq. (29) yields
9" fig Te(RaR.) = g fir. Tr(RoRa) - (30)
Consider the d x d matrix whose matrix elements are
Al = " Tr(RyR,) . (31)
We can then rewrite eq. (30) in the following form:
finAle = foeA%a. (32)

We recognize f§, = (Fy)¢, and f& = (Fy)?.. Hence, eq. (32) is equivalent to the ec component
of the matrix equation,
RA=AF,,

forallb=1,2,...,d.

We proved in class that the adjoint representation of a simple Lie algebra (whose gener-
ators are represented by the matrices Fp) is irreducible. Applying Schur’s second lemma to
representations of Lie algebras,” any matrix that commutes with all the F}, must be a multiple
of the identity. Hence, A = cI or equivalently.

g“4 Tr(R4R.) = crd’,
where cg is some complex constant. Using g®g.; = §¢, it immediately follows that
Tr(Rth> = CRYhc (33)

which is the desired result.

TA review of the proof given in class of Schur’s lemmas (which were applied to group representations)
reveals that it also applies to representations of Lie algebras. Indeed, for any algebraic structure &7, Schur’s
second lemma states that if there exists a matrix M such that D(A)M = M D(A) for all A € o7, where D(A)
is an n-dimensional irreducible matrix representation of A (over a complex representation space C™), then it
follows that M must be a multiple of the identity matrix. In particular, any element of a Lie algebra & can
be expressed as some linear combination of the the generators A, (which serve as a basis for the Lie algebra).
Consequently, if D(A,)M = MD(A,) for all a = 1,2,...,d, then it follows that D(A)M = M D(A) for all
A € o/, and Schur’s second lemma applies.

10



(¢) The quadratic Casimir operator is defined as Cy = g™eqep, where g% is the inverse of
Jap- Recall that Cy commutes with all elements of the Lie algebra. Hence, by Schur’s lemma,
Cy must be a multiple of the identity operator. Let us write Cy = Co(R)I, where I is the
dr X dg identity matrix and Cy(R) is the eigenvalue of the Casimir operator in the irreducible
representation R. As noted above, d is the dimension of the Lie algebra g. Show that Cy(R)
is related to the index cj by
_ deg
=0
Check this formula in the case that R is the adjoint representation.

Co(R)

By definition,
Co(R)T = g™ Ry Ry, (34)

where I is the dg X dg identity matrix, dg is the dimension of the representation R, and
a,b=1,2,...,d. Taking the trace of eq. (34) and using eq. (33), it follows that:

drCy(R) = g®Tr(R.Ry) = crg™gap = crd,

since g%gq = 02 = d. Hence, solving for Cy(R), one obtains:

dc
Cy(R) = 2. (35)
dr
For the adjoint representation (usually denoted by R = A), we have d4 = d. Moreover,
the adjoint representation generators are (R,)’. = f., as shown in class. Hence,

Tr(RaRd) = (Ra)bC(Rd)cb = fcljcfjb = Gad

where we used the definition of the Cartan metric tensor at the last step. Comparing this
result with that of eq. (33) yields ¢4 = 1. Hence, eq. (35) implies that Cy(A) = 1 in agreement
with the theorem proved in class.

(d) Compute the index of an arbitrary irreducible representation of su(2).
For su(2), the irreducible representations are labeled by j = 0, %, 1,% .... The quadratic
Casimir operator is proportional to J + J3 + J2, where [J;, J;] = i€ J; in the physicist’s
convention. Since the eigenvalue of of J7 + J5 + J3 is j(j + 1), we shall adjust the overall nor-
malization of the Casimir operator so that Cy(A) = 1. Given that the adjoint representation
of su(2) corresponds to j = 1, it follows that:

Ca(j) = 540 +1).

We now use eq. (35) to obtain the index of an irreducible representation of su(2). Using
dr = 27 + 1 for the irreducible representation labeled by j, it follows that the index cp is

c(j) =i+ D2 +1).

In the defining representation, j = %, and we find cp = c(%) = 1 In the adjoint representation,

4
j =1 and we find that ¢4 = ¢(1) = 1 as expected from part (b).

11



(e) Compute the index of the defining representation of su(3) and generalize this result to
su(n).

First, consider the Lie algebra su(3). We choose the generators in the defining representation
to be the Gell-Mann matrices, %)\a. Following the mathematician’s conventions, we define
T, = —%z’)\a so that

[Taa Tb] = fabcTc ’

where the f,;. are the totally antisymmetric structure constants in the convention where the
T, satisfy
Tr(TaTb) - _iTr()\a)\b) - _%5ab> (36)

using the explicit form for the Gell-Mann matrices given in the class handout entitled Prop-
erties of the Gell-Mann matrices. In this basis choice,

Gab = f;dfbcd = —30ab

using the explicit form for the su(3) structure constants listed in the class handout on SU(3).
The index of the defining representation, usually denoted by ¢ (since physicists also refer to
this representation as the fundamental representation), can be obtained from eq. (33),

Tl"(TaTb) = CF(—:))(Sab) .

Using eq. (36) to compute the trace, we end up with cp = é )

To generalize these results to su(n), we shall make use of the construction of the su(n) Lie
algebra given in the class handout entitled Properties of the Gell-Mann matrices. There, we

defined traceless n x n matrices,
a a 1 a
(Fb )cd = 5bc5d - _517 5cd7
n
which satisfy the commutation relations,
[y, Ff] = 84Ff — 0y (37)

The generalized (hermitian) Gell-Mann matrices are:

o1] O . sl 0
M= F 4+ F} = (—01—0) . M =i(F - F) = (02 O) :
1 2 o3| 0
>\3 = Fl — F2 = (T—O) y etc. (38)

where the Pauli matrices occupy the upper left 2 x 2 block of the n x n matrix generators
(with all other elements zero). In the mathematician’s convention, we define T, = —1i), and
[To, Ty) = faeIe, where the fup. are totally antisymmetric and Tr(7,7}) o . To compute
the constant of proportionality, one can check for example that

TI'(Tng) = —iTI'()\g)\g) = —% y

12



using eq. (38). Clearly, the constant of proportionality does not depend on the choice of a
and b. Hence, it follows that the generators of su(n) in the defining representation satisfy

TI"(TaTb) = _%5ab . (39)
Next, we evaluate the Cartan metric tensor, which is given by:

Jab = faafie- (40)

In the convention where the generators satisfy Tr(7,7T},) o 04, the Cartan metric tensor also
satisfies gup o dg4p, in light of eq. (33). To determine the proportionality constant, consider

T3, Te] = facalu-
We can evaluate ¢33 = f34cf3cq by examining eq. (37). In particular,

[T37F12]:F127 [T37F21]:_F217 [T37FF]I%F1[17 [T37F¢11]:_%Fal7

T3, Fy) = =3 F7, [, Fyl=5F, [T, Fy] =[5, F,] = 0, (41)

—2
for a # b and a,b = 3,4,...,n. Note that the non-diagonal generators T, of the form F®+ F?°
and i(F® — F?) for a < b with a = 1 or a = 2 are the only generators that do not commute
with T3. Eq. (41) provides the necessary information to evaluate gss,

933 = (+1)(-1) + (n—1) (3)(—=3) = —n.

where the first term on the right-hand side derives from f3;5 f301, whereas the remaining terms
derive from the remaining combination of non-zero structure constants. That is,

Gab = f;dflflc = _néab .
The index of the defining representation can be obtained from eq. (33),
Tl"(TaTb) = CF(—H(Sab) .

Using eq. (39) to compute the trace, we end up with

1

= (42)

Cr
One sees that this general result is consistent with the corresponding results of su(2) and su(3)
previously obtained.

Remarks:

Using egs. (35) and (42), one can compute the eigenvalue of the quadratic Casimir operator
in the defining representation of su(n). In particular, since d = n®>~1, dp = n and ¢y = 1/(2n),
it follows that:

n?—1

2n?

Cz(F) =
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Moreover, the Casimir operator in the defining representation of su(n) is given by
Cy(A) =1,

according to the theorem proved in class. However, note that the Casimir operator of su(n)
is defined in an arbitrary irreducible representation R by

n2-1

1
Cy=g"R.Ry = —— > R.R,, (43)
a=1

where we have used eq. (40) [recall that g% is the inverse of g,). In the physics literature,
in the case of su(n) one typically defines Cy by omitting the overall factor of 1/n in eq. (43).
Consequently, Co(R) is a factor of n larger than indicated above, in which case

CQ(F) = o y CG(A) =n.

Additional details on the Casimir operator and index of an irreducible representation of a
simple Lie algebra can be found in the class handout entitled, The eigenvalues of the quadratic
Casimir operator and second-order indices of a simple Lie algebra.

5. Various subalgebras of su(3) may be identified with specific subsets of the su(3) generators.
(a) Show that the Gell-Mann matrices A;, A2, and A3 generate an su(2) subalgebra.
Consider the commutation relations satisfied by Ay, Ay and A3,
Aas o) = 2i€apeAe, for a,b,c=1,2,3.
If we define T, = —%Ma, then the resulting commutation relations,
T, Ty = €Ty, for a,b,c=1,2,3, (44)
correspond to an su(2) Lie algebra, which is a subalgebra of the su(3) Lie algebra.

(b) Show that the Gell-Mann matrices A2, A5, and A7 generate an s0(3) subalgebra. Why
do you think I called this an so(3) subalgebra rather than an su(2) subalgebra?

Consider the commutation relations, [Ag, A5] = iA7, and cyclic permutations thereof. It follows
that {—iXe, —iX5, —iA;} satisfy the same su(2) commutation relations as the T}, of eq. (44).
Indeed, the matrix forms of {—i)y, —i\s, —iA7} are:

0 0 0 0 0 1 0 -1 0
0 0 —1], o o0 o, 1 0o o, (45)
0 1 0 -1 0 0 0 0 0

which are of the form (A,)pe = —€ape-

14



The matrices given in eq. (45) constitute the adjoint representation of the generators of
su(2). When exponentiated, these matrices generate the Lie group SO(3), since SO(3) is the
adjoint group of SU(2). Hence, we say that {—i\y, —iA5, —iA;} generate an s0(3) subalgebra
of su(3).

(c) Decompose (if necessary) the three-dimensional irreducible representation of su(3) into
representations that are irreducible under the subalgebras of parts (a) and (b).

If we decompose the three-dimensional irreducible representation of su(3) denoted henceforth
by 3, with respect to the su(2) subalgebra that is generated by {—i\;, —idg, —iAg}, then it
is easy to determine from the weight diagram shown in Fig. 1 the components of the weight
vectors of the 3 corresponding to the eigenvalues of T3 = %)\3.

Figure 1: The weight diagram of the three-dimensional defining representation, 3, of su(3).

In particular, the 3 of su(3) contains a doublet () with 73 = ﬂ:% and a singlet s with T3 = 0.
That is, with respect to the su(2) subalgebra generated by {—i\;, —ids, —iA3}, the 3 of su(3)
decomposes as

3—2¢1.

This is an example of a branching rule.

The decomposition of the 3 of su(3) with respect to the su(2) subalgebra generated by
{—iXa, —iA5, —iA7} is obtained as follows. In part (b), we noted that the explicit form for the
matrices {—i)g, —ids, —iA7} are given by (Ay)pe = —€ape, Which is the adjoint representation
for the generators of su(2). The latter is a three-dimensional irreducible representation of
su(2). Hence, in this case, the corresponding branching rule is

3—3. (46)
Since the adjoint group of SU(2) is SO(3), it is appropriate to consider the branching rule as

describing the embedding of an so(3) subalgebra within the Lie algebra su(3).
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6. Consider the simple Lie algebra g generated by the ten 4 x 4 matrices: o,®1, 0,7, 0,73
and I ® 75, where (I,0,) and (I, 7,) are the 2 x 2 identity and Pauli matrices in orthogonal
spaces. For example, since 73 = ((1) _(1)), we obtain in block matrix form:

O-a®7-3:(0(-)a 0 )7 (a:17273>7

_Ua

where 0 is the 2 X 2 zero matrix. The remaining seven matrices can be likewise obtained.
Take H; = 03 ® I and Hy = 03 ® 13 as the generators of the Cartan subalgebra. Note that if
A, B, C, and D are 2 x 2 matrices, then (A® B)(C ® D) = AC ® BD.

(a) Find the roots. Normalize the roots such that the shortest root vector has length 1.
What is the rank of g?

First, we write out the ten generators explicitly in block matrix form:

Aa50a®7'1:<fa %a), (a=1,2,3),
B, =0,073= (0;)“ _(;_a , (a=1,2,3),
Ca:0a®1—<00“ (?a), (a=1,2,3),
DEI@TgI(Z.(i _ig). (47)

To check that these generators actually generate a Lie algebra, we work out all the commuta-
tion relations:

[Aaa Ab] = 2i€abcCc 5 [Baa Bb] = 2i€abcCc ) [Caa Cb] = 2i€abcCc s
[Am Bb] = _Q'é(sabDa [Aaa Cb] = 2i€abcAc> [Baa Cb] = 2’é€achC>
[A,, D] =2iB,, [B,, D] = —2iA,, [C., D] =0, (48)

where we have used 0,0, = 104, + i€p.0.. For example,

) NAEAYZIR. 0 [0\ (0 |a
[Aava]_A“Bb_BbA“_ <a’a‘ 0) (0 ‘—Ub)_ (0 ‘_Ub) <0a‘ 0

_ ( 0 | —(0a0y + abaa))

Oq0p + 0p0g ‘ 0
(0 | -2L6,\ .
_ <mab _— ) 9D (49)
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Alternatively, one can derive the commutation relations displayed in eq. (48) by employing
the direct product representation of the Lie algebra generators given in eq. (47) and using
(A® B)(C ® D) = AC ® BD. For example, eq. (49) can also be obtained as follows.

[Ag, Byl = (0, @ 11) (0, @ 3) — (0, ® T3) (0, @ T1)

= (040b) ® (T173) — (0b04) ® (T371)

= (0403) ® (—iT2) — (0b04) ® (iT2)

= (040p + 0p04) ® (—iT3)

= (2104p) ® (—iTe) = =200 I @ 79 = =200, D .

All other commutation relations are easily derived using either of the methods shown above.
Thus, the ten generators {A,, By, C,, D} generate a Lie algebra, since the commutation rela-
tions close.

To determine the roots, we treat g as a complex Lie algebra, so that we are free to consider
complex linear combinations of generators. It is convenient to choose the Hermitian generators
Hi =03®1=C3 and Hy = 03 ® 73 = B3 to span the Cartan subalgebra. Indeed, these two
generators are diagonal in the representation given in eq. (47). Therefore, the rank of the
algebra g is 2, corresponding to the maximal number of simultaneously diagonal generators.

We now rewrite the commutation relations given in eq. (48) in the Cartan-Weyl form.
Starting from the commutation relations,

[Bs, A1] = [Bs, As] =0, [C3, Ay] = 2iAs, [C3, Ag] = —2i A, ,
it is clear that we should define AL = A; & iA,, in which case,
By, Ax] =0, [C3, AL] = £2A, . (50)
Next, we focus on the commutation relations,
[Bs, As] = 2iD, [Bs, D] = —2iAs, [Cs, A3] = [C5,D] =0
These results motivate the definition Dy = Az 47D, in which case,
(B3, Di] = £2Dy, [Cs, D] =0. (51)

The remaining commutation relations are:

[Bg, Bl] = 2202 s [Bg, Bg] = —27,01 s [Bg, Cl] = 22B2 , [Bg, Cg] = —22B1 s
(52)
[03, Bl] == 27,32 5 [03, BQ] == —2131 y [Cg, Cl] = 2202 y [Cg, 02] = —27,01 .
(53)
Defining By = By £ iBs and Cy = C £iCy, egs. (52) and (53) can be rewritten as:
[B37 B:I:] = :l:QC:I: ) [B37 C:I:] = :|:2B:|: ) [037 B:I:] = :l:2B:|: ) [037 C:I:] = :l:2C:|: .
(54)
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Thus, if we define Fy = By + C1 and G+ = By — C4, the eq. (54) will be in Cartan-Weyl
form,

[Bs, Fy| = £2F (B3, Fi] = £2F [C3, G| = F2G4 [Cs, G4 = £2G+.
(55)
To summarize, egs. (50), (51) and (55) provide the Cartan-Weyl form for the commutation
relations among the generators H; = {C3, B3} of the Cartan subalgebra and the off-diagonal
generators F, = {Ay, Dy, E1, F.}. Note that we have chosen the generators to satisfy,

H = H;, E_o=E]. (56)
The root vectors are defined by the Cartan-Weyl form for the Lie algebra commutation
relations, [H;, Fo] = ;Eq, for i = 1,2,...,r, where r = rank g. In the present example,

r =2, Hy = C3, Hy = B3 and the off diagonal generators are E,, = {A+, Dy, Eyx, Fir}. Hence,
we identify the root vectors derived from the non-diagonal generators:
Ay £(0,2), Di: +£(2,0), (57)
Fo: +£(2,2), Gyt +(-2,2), (58)
where the first entry of the root vector is the eigenvalue of adq, and the second entry of the
root vector is the eigenvalue of adp, The Cartan metric can be computed from the formula,

gij = Z OéiOéj .
From the four root vectors obtained in egs. (57) and (58), we immediately obtain

gij = 240;5 . (59)

L6;;. One can now define the inner product on the root

The inverse Cartan metric is ¢ = 5;

space, B
(a,B8) = g7 ;. (60)

The squared-length of a root vector a is given by
2
(Ot, Ot) = gijOéiOéj = ZO&Z'OQ .
i=1

It is convenient to redefine the inner product given in eq. (60) by introducing an overall
multiplicative positive constant such that the new inner product is Euclidean,

(a7 ﬁ) = Z O‘iﬁi .

Moreover, we are always free to rescale the generators of the Cartan subalgebra (which rescales
the root vectors) in such a way that the shortest root vector has length 1. In these conventions,
the rescaled roots are given by [cf. egs. (57) and (58)]:

+(0,1), +£(1,0), =*(1,1), =£(-1,1).
and the corresponding root diagram is shown in Fiig. 2, which we recognize as the root diagram
for the rank-2 Lie algebra sp(2,C) = s0(5,C).8

8In the notation used here, sp(n,C) is a Lie algebra of rank n. However, many books denote this Lie
algebra by sp(2n, C). Both conventions are common in the mathematics and physics literature.
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(_171) (171)
(—1,0) (1,0)
(-1,-1) (1,-1)
(07_1)

Figure 2: The root diagram for sp(2,C) 2 so(5, C).

(b) Determine the simple roots and evaluate the corresponding Cartan matrix. Deduce
the Dynkin diagram for this Lie algebra and identify it by name.

The simple roots correspond to the two smallest positive roots. These are
a;=(0,1), and ax=(1,-1). (61)

It is a simple matter to check that the other two positive roots can be expressed as sums of
simple roots,
(1,0):a1+a2, (1,1):2a1+a2

The Cartan matrix is defined by:?

o 2(0&2, Otj)
Ajj 7(0% o) (62)

where the inner product (o, 3) = >, ;; in the convention where g;; = ¢;;. Using eq. (61),
we obtain AH = A22 = 2, A12 = —2 and Agl = —1. That iS,

A= (_f _3) . (63)

The structure of the Dynkin diagram depends on the angle between the two simple roots:

. (al,ag) o 1
COS Py = = - —.

\/(al, o) (o, as) V2

9 Warning: in the mathematics literature, eq. (62) is often employed as the definition of the transposed
Cartan matrix. You should check carefully when using results from books on Lie algebras.
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Hence ¢q,a, = 135°, which corresponds to a double line connecting the two balls of the
Dynkin diagram. Hence, the Dynkin diagram corresponding to the Lie algebra, whose simple
roots are given by eq. (61), is exhibited in Fig. 3, where the shaded ball corresponds to the
simple root of the smallest length. In Cartan’s notation, this Lie algebra is By = (), which
corresponds to sp(2,C) = so(5, C) as noted at the end of part (a).

g Qa2

Figure 3: The Dynkin diagram for sp(2,C) = s0(5, C).

(¢) The fundamental weights m,; are defined in terms of the simple roots a; € II such that
Q(mi, a])
(aj> Q; )

where r = rank g. Using the results of part (b), determine all the fundamental weights of g.

=0ij, fori,j=1,2,...,r, (64)

We can solve for the m; by expanding the fundamental weight vectors in terms of the simple

roots:
T
m,; = E CLiO .
k=1

Inserting this expression into eq. (64) yields,

Cltk, Cltj
g Ckz = 5ij )
a], a]

which can be expressed in terms of the Cartan matrix A,

r
E CkiAjk - 62]
k=1

This implies that ¢ = A™!, and we conclude that

T

k=1

Using the Cartan matrix given in eq. (63), the inverse is easily obtained:

2 2
-1 _ 1
A= (1 2) .
Thus, eq. (65) yields the two fundamental weights of sp(2,C) = so(5,C),

m, = oy + Cl2 (% %) (66)
My = Q] + g = (1 0) (67)

where we have used eq. (61) for the simple roots.
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(d) Each of the r fundamental weights is the highest weight for an irreducible representation
of g. Collectively, these are called the fundamental (or basic) representations of g. For
each fundamental representation of g, compute the complete set of weights and draw the
corresponding weight diagrams.'® What are the corresponding dimensions of the fundamental
representations of g.

The complete set of weights for the irreducible representations of sp(2,C) = so(5,C)
corresponding to the highest weights m; and m, respectively, can be obtained by the method
of block weight diagrams described in Robert N. Cahn, Semi-Simple Lie Algebras and Their
Representations (Dover Publications, Inc., Mineola, NY, 2006).}1 Given a highest weight M,
the corresponding Dynkin labels k; (which are non-negative integers) are defined by

ki = AM, o) : where a; € I1. (68)
(o, ;)
The irreducible representations of the Lie algebra g are often denoted by placing the ¢th
Dynkin label k; above the ith ball of the Dynkin diagram (corresponding to the ith simple
root a;), as shown in Fig. 4 below.
The Dynkin labels for the fundamental weights m; and my are [cf. eq. (64)],'

my (1,0), meo : (O,l), (69)

and the corresponding block weight diagrams are exhibited in Fig. 4.

Figure 4: The block weight diagrams of the fundamental irreducible representations of sp(2) = so(5).

The above block weight diagrams, corresponding to the two fundamental representations
of sp(2,C) = s0(5,C), were obtained as follows. We employed the theorem that establishes

10The weight diagrams should be plotted on a two dimensional plane, where the axes correspond to the
diagonalized generators normalized such that the shortest root vector has length 1.

"UHowever, note that Cahn defines the Cartan matrix that is the transpose of our definition.

12Do not confuse the Dynkin labels of a weight with its coordinates in weight space given in eqs. (66)
and (67). For example, the fundamental weight m; = a; + %ag = (%, %), whereas its Dynkin labels are
(k1,k2) = (1, 0), as indicated in eq. (69).
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strings of weights of the form

2(m, o)) 2(m, ;)

— kA for values of K =0,1,2,,...

(ai7 Oﬁi) i ’ (O%Oéi) .

Thus, starting with any weight m, the Dynkin labels for the weights appearing below it in the
block weight diagram are obtained by subtracting off the jth column of the Cartan matrix n
times, where n is the jth positive Dynkin label of the weight.'> Applying the above algorithm
produces the Dynkin labels of the four weights corresponding to the representation specified
by m; and the five weights corresponding to representation specified by m..

In this method, the computation of the multiplicity of a given weight requires additional
analysis. But, for the simple cases treated above, all weights appear with multiplicity equal
to one, in which case the dimension of the representation is simply equal to the number of
weights in the block weight diagram.

Hence, the representations depicted by the block weight diagrams of Fig. 4 are four-
dimensional and five-dimensional, respectively, The four-dimensional representation, corre-
sponding to the highest weight m, is precisely the matrix representation given in eq. (47).
This is either the defining representation of sp(2, C) or the spinor representation of so(5, C).*
In contrast, ms is the highest weight of a five-dimensional representation, which corresponds
to the defining representation of so(5, C).

It is instructive to re-express the weights in terms of its coordinates in the vector space
spanned by the simple roots. The weights can then be depicted as vectors in a two-dimensional
plane. Given a weight specified by its Dynkin labels (ki, k2), the corresponding weight m is
obtained by solving the equations [cf. eq. (68)]:

by = 2 ea) by = 02 (70)
(a1, 1) (a2, )
To solve for m in terms of k; and ks, we expand m as a linear combination of simple roots
[which are given explicitly in eq. (61)],

m = C10 + Co0eo . (71)
Inserting this expression for m into eq. (70), it follows that:

2(cion + 20, @)

k’l = = 201 — 202 s
(a1> al)
2
iy — (croq + a0, p) — e+ 20
(a27 a2)
after using (o, a1) = 1, (o, az) = —1 and (aw, @) = 2. Solving for ¢; and ¢ then yields:
01:k1+k2, 02:%]{51+/{52. (72)

131f there are two (or more) positive Dynkin labels, then the block weight diagram branches. This does not
occur in the examples exhibited in Fig. 4.

Since sp(2,C) = s0(5,C), the representations obtained above are representations of either Lie algebra.
However, the interpretation of the representation depends on which choice of Lie algebra is made.
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» T (—-1,0) - 4 T

(0,—-1) y

Figure 5: The weight diagrams of the fundamental representations of sp(2,C) = s0(5,C), with dimensions
four [left] and five [right], respectively.

Hence, using eqgs. (61) and (72), the weight m specified by eq. (71) is given by:
m = (%]{71 + ]fg, %]{31) . (73)

_ (1 1
and m; = (3, 3)
1, in which case

As a check, if m = m then k; = 1 and kg = 0, in which case ¢; = 1, ¢ =
in agreement with eq. (66). Likewise, if m = my then k; = 0 and ks
¢ = ¢y =1and m; = (1, 0) in agreement with eq. (67).

One can use eq. (73) to obtain the coordinates of all the weights exhibited in Fig. 4.
For the four-dimensional representation specified by the Dynkin labels (1,0) and the five-
dimensional representation specified by the Dynkin labels (0, 1), the corresponding weight
space diagrams are given in Fig. 5.1 In particular, T} = 1H; = 1C3 and T, = $H, = 1B;
are the diagonal generators normalized such that the shortest root vector has length 1. Given
the explicit four-dimensional representation in eq. (47), one can check that the weight vectors,

{(3.3), (3,—3), (=3,3), (=3, —2)}, exhibited in Fig. 5 satisfy the eigenvalue equations,®

1
2

Tilm) = m;|m,) , fori=1,2, (74)

where m = (mq, my) are the coordinates in the T73-T5 plane.

The weights of the five-dimensional representation, {(1, 0),(0,1),(0,0), (0, —1), (-1, 0)},
shown in Fig. 5 include a zero weight (indicated by the filled circle at the origin of the weight
diagram). To check that eq. (74) is satisfied in this latter case, it is straightforward to construct
explicit five-dimensional matrix representations of 7} and 75, which are the Cartan subalgebra
generators in the defining representation of so(5, C). Explicitly, we may choose the following

15 As previously noted, all weights shown in the two weight space diagrams above have multiplicity one,
which means that the corresponding simultaneous eigenvector |m) defined in eq. (74) is unique.

16Sometimes, the eigenvalues m; and mgy are called weights and the corresponding eigenvector |m) is called
the weight vector. However, it is more common to refer to the weight vector m of a weight space diagram as
the vector whose coordinates (mq,mg) are given by the eigenvalues of T and T5.
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Hermitian generators of the Cartan subalgebra,'”

0 —i 0 0 0 0 0 0 0 0
i 0 0 0 0 0 0 0 0 0

=10 o o o of, T,=|0 0 0 —i 0 (75)
0 0 0 0 0 0 0 i 0 0
0 0 0 0 0 0O 0 0 0 0

The simultaneous normalized eigenvectors, denoted by |m) in eq. (74), are

1

V2

O OO ==
O == OO
—_ o O O O

01,
il ol v
0

It is now a simple matter to check that the weights of the five-dimensional representation
shown in Fig. 5 satisfy eq. (74).

Finally, we note that the weight diagrams obtained above also apply to the real forms of
sp(2,C) = s0(5,C) [such as the corresponding compact real Lie algebras, sp(2) = so(5)].

1"The generators shown in eq. (75) are the obvious generalizations of the corresponding results of s0(3,C)
and s0(4, C). In the case of s0(3,C), there is one Hermitian 3 x 3 matrix generator of the Cartan subalgebra in
the defining representation (or equivalently the adjoint representation), usually denoted by (13);r = —i€3;ik.
In the case of s0(4, C), there are two Hermitian 4 x 4 matrix generators of the Cartan subalgebra in the defining
representation, denoted by iAs and iB3 in the notation of problem 3 of this problem set.
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