
The Lorentz and Poincaré groups in relativistic

field theory

Eric Shahly

June 2019

Eric Shahly The Lorentz and Poincaré groups in relativistic field theory



Generalized orthogonal groups

The orthogonal groups O(n), which preserve the norm of a vector

in Rn, can be generalized to groups O(m,n) which preserve an

indefinite metric g = 1m,n =

[
1m 0
0 −1n

]
.

The defining relation for Λ ∈ O(m,n) is

ΛT g Λ = g

For ~x, ~y ∈ Rm+n,Λ ∈ O(m,n), ~y = Λ~x implies

y21+. . .+y
2
m−y2m+1−. . .−y2m+n = x21+. . .+x

2
m−xm+1−. . .−x2m+n
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Lorentz transformations

In special relativity we are interested in Lorentz transformations

which preserve the ”lengths” of four-vectors in Minkowski

space,

XµXµ = gµνX
µXν = (X0)2 − (X1)2 − (X2)2 − (X3)2

where gµν = diag(1,−1,−1,−1) is the Minkowski metric.

Equivalently, a Lorentz transformation Λ must satisfy

ΛT g Λ = g. That is, Λ ∈ O(1,3).
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The Lorentz group O(1,3)

The defining relation ΛT g Λ = g implies that |detΛ| = 1 and
|Λ0

0| ≥ 1 for any Λ ∈ O(1,3).

O(1,3) has 4 connected components corresponding to different

possible signs of detΛ and Λ0
0.

The component connected to the identity is a subgroup, often

called the proper orthochronous Lorentz group SO(1, 3)+.

We can think of the 4 components as a group:

{1, P, T, PT} ∼= Z2 × Z2.
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Relativistic field theory

To construct a relativistic field theory, we would like our

equations of motion for a particular field to hold true in all

reference frames. This means the action S =
∫
L(x)d4x should

be invariant with respect to any transformation Λ ∈ SO(1, 3)+

The Lagrangian density L transforms like a Lorentz scalar :

L(x) → L(Λ−1x)
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Relativistic field theory

Consider a multiplet field Ψa with n components. It must

transform as Ψa(x) →Mab(Λ)Ψb(Λ
−1x), whereMab(Λ) is an

n×n matrix. This requires us to construct an n-dimensional

representation of SO(1, 3)+.
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The Lie algebra so(1, 3)

Linearizing the defining relation about the identity, we find that

x ∈ so(1, 3) must satisfy xT g + gx = 0. x is a 4× 4 matrix, and

this relation imposes 10 conditions on the elements of x. We can

construct a basis a1, . . . , a6 of the Lie algebra consisting of
matrices Ji andKi for i = 1, 2, 3.

Eric Shahly The Lorentz and Poincaré groups in relativistic field theory



The Lie algebra so(1, 3)

J1 =


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 J2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0



J3 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


The Ji are clearly the generators of the SO(3) subgroup. The
corresponding one-parameter subgroups are finite spatial rotations.
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The Lie algebra so(1, 3)

K1 =


0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

 K2 =


0 0 −1 0
0 0 0 0
−1 0 0 0
0 0 0 0



K3 =


0 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 0


TheKi are the generators of Lorentz boosts.

Eric Shahly The Lorentz and Poincaré groups in relativistic field theory



The Lie algebra so(1, 3)

In this basis, the algebra looks like :

[Ji, Jj ] = εijkJk

[Ji,Kj ] = εijkKk

[Ki,Kj ] = −εijkJk
for i, j = 1, 2, 3
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The Lie algebra so(1, 3)

We can consider the complexification of the Lie algebra, denoted

by so(1, 3)C, in order to construct a basis that is equivalent to a
direct sum of Lie algebras (that is, the complexification so(1, 3)C
is semi-simple)

Define a new basis through complex linear combinations of the

original basis vectors :

~J+ ≡ 1

2
( ~J + i ~K)

~J− ≡ 1

2
( ~J − i ~K)
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The Lie algebra so(1, 3)

This new basis satisfies the following commutation relations:

[J i
+, J

j
+] = εijkJ k

+

[J i
−, J

j
−] = εijkJ k

−

[J i
+, J

j
−] = 0

In this basis, it is clear that so(1, 3)C ∼= su(2)C
⊕

su(2)C. At the
group level we have SO(1, 3)+ ∼= SL(2,C)/Z2.
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Finite dimensional reps. of SO(1, 3)+

The previous result implies we can characterize a representation

of SO(1, 3)+ by a pair of half-integer numbers, (s1, s2) where
s1, s2 = 0, 12 , 1, . . .

The dimension of this representation is (2s1 + 1)(2s2 + 1).

These representations define the possible types of fields which

can be described by our relativistically invariant field theory
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Finite dimensional reps. of SO(1, 3)+

(0, 0)→ scalar fields, Φ

(12 , 0)→ left chiral Weyl spinor, ψL

(0, 12) → right chiral Weyl spinor, ψR

(12 ,
1
2) → four-vector, V µ
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Spin 1
2 fields

Note that there are two different 2-dimensional representations

which are appropriate for describing the transformations of a

spin 1
2 field : (12 , 0) and (0,

1
2)

These representations describe Weyl fermions ψL and ψR of left

and right chirality respectively. ψL and ψR are fundamentally

different degrees of freedom - see neutrinos, and electroweak

theory.

Under infinitesimal Lorentz transformations,

ψL → (1− i~θ · ~σ/2− ~ζ · ~σ/2)ψL

ψR → (1− i~θ · ~σ/2 + ~ζ · ~σ/2)ψR

In the massless limit, a state of definite chirality is also a state of

definite helicity.
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Spin 1
2 fields

In QED, one often uses four component Dirac spinors which mix

ψL and ψR

This corresponds to the (0, 12)
⊕

(12 , 0) representation. The
generators are

S0i = − i

2

(
σi 0
0 −σi

)

Sij =
1

2
εijk

(
σk 0
0 σk

)
for i, j = 1, 2, 3.
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Finite dimensional reps. of SO(1, 3)+

One can show that the Klein-Gordon equation,

(∂2 +m2)Φ(x) = 0 is invariant under the transformation

Φ(x) → Φ(Λ−1x)

Similarly, the Dirac equation (iγµ∂µ−m)ψ(x) = 0 is invariant
under the transformation ψ(x) → exp(− i

2ωµνS
µν)ψ(Λ−1x)

And, the Weyl equations iσµ∂µψL = 0 and iσµ∂µψR = 0 are
invariant under transformations of ψL and ψR under the

2-dimensional fundamental / anti-fundamental reps. of SU(2)

respectively.
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Finite dimensional reps. of SO(1, 3)+

Important note : SO(1,3) is non-compact. This means that the

finite-dimensional representations are not unitary - we can see this by

looking at the boost component of the general transformation. In a

quantum theory we need unitary representations. Basis states of the

Hilbert space of a quantum field theory transform under unitary

infinite-dimensional representations of the full Poincaré group.
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Poincaré group

The Poincaré group is also known as the inhomogeneous Lorentz

group, or ISO(1,3). This group contains all of SO(1,3) as a

subgroup, with 4 additional generators Pµ that generate

translations in spacetime.

We can outline the strategy for classifying the

infinite-dimensional unitary representations of the Poincaré

group.
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Infinite dimensional reps. of the Poincaré group

Consider the abelian invariant subgorup T4 of ISO(1,3) (the
translation group in four dimensions).

Basis vectors of our representation are built out of eigenvectors

of the generators of this group (Pµ), plus those of commuting

operators from the Lie algebra of the little group.

Basis vectors are characterized by their eigenvalues with respect

to quadratic Casimir operators : C1 = PµP
µ (eigenvalue

c1 =mass) and C2 =WλW
λ, where

W λ ≡ ελµνσJµνPσ/2

is called the Pauli-Lubanski vector.
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Infinite dimensional reps. of the Poincaré group

Four possible cases :

c1 = 0, pµ = 0 (vacuum)

c1 > 0 (massive particle)

c1 = 0, pµ 6= 0 (massless particle)

c1 < 0

Each case leads to a different little group of the factor group

SO(1,3). Each irreducible unitary representation of the little

group then induces an irreducible unitary representation of the

full Poincaré group.
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Case 1: c1 = 0, pµ = 0

The little group is the subgroup of the factor group

ISO(1, 3)/T4 ∼= SO(1, 3) which leaves the test vector invariant. In
this case, the little group is the full homogeneous Lorentz group

SO(1,3).
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Case 2: c1 > 0

For a massive particle, we can always boost to a rest frame where

pµ = (M, 0, 0, 0). In this case the little group is just the rotation
group, SO(3). The basis vectors we will choose will satisfy:

P µ |0λ〉 = pµ |0λ〉

J2 |0λ〉 = s(s+ 1) |0λ〉

J3 |0λ〉 = λ |0λ〉

Here, 0 is labeling the three-momentum ~p = 0.
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Case 2: c1 > 0

By acting on these basis vectors with elements of SO(1,3) not in the

little group, we can obtain a general state |pλ〉. The result is a
representation of the Poincaré group labeled by (M, s) that is
irreducible, unitary and infinite-dimensional.
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Case 3: c1 = 0, pµ 6= 0

This corresponds to a massless particle moving with some momentum

ω, so we can write the four-momentum as pµ = (ω, 0, 0, ω). The little
group is even smaller: SO(2). The main difference is that in this case,

the helicity λ is Lorentz invariant.
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Infinite dimensional reps. of the Poincaré group

Result:

Massless states are identified with basis vectors of

infinite-dimensional irreps. labeled by a momentum ~p and a

helicity λ. There are two distinct possible states corresponding to
either λ = s or λ = −s for some s = 0, 12 , 1, . . .

Massive states are identified with basis vectors of

infinite-dimensional irreps. labeled by a massM , a momentum

~p, and a helicity λ = −s, . . . , s for some s = 0, 12 , 1, . . .
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