The Lorentz and Poincaré groups in relativistic field theory

Eric Shahly

June 2019

Eric Shahly The Lorentz and Poincaré groups in relativistic field theory

- The orthogonal groups O(n), which preserve the norm of a vector in \mathbb{R}^n , can be generalized to groups O(m,n) which preserve an indefinite metric $g = \mathbb{1}_{m,n} = \begin{bmatrix} \mathbb{1}_m & 0 \\ 0 & -\mathbb{1}_n \end{bmatrix}$.
- The defining relation for $\Lambda \in O(m,n)$ is

$$\Lambda^T g \ \Lambda = g$$

For $\vec{x}, \vec{y} \in \mathbb{R}^{m+n}, \Lambda \in O(m,n), \ \vec{y} = \Lambda \vec{x}$ implies

$$y_1^2 + \ldots + y_m^2 - y_{m+1}^2 - \ldots - y_{m+n}^2 = x_1^2 + \ldots + x_m^2 - x_{m+1} - \ldots - x_{m+n}^2$$

 In special relativity we are interested in Lorentz transformations which preserve the "lengths" of four-vectors in Minkowski space,

$$X^{\mu}X_{\mu} = g_{\mu\nu}X^{\mu}X^{\nu} = (X^{0})^{2} - (X^{1})^{2} - (X^{2})^{2} - (X^{3})^{2}$$

where $g_{\mu\nu} = \text{diag}(1, -1, -1, -1)$ is the Minkowski metric.

Equivalently, a Lorentz transformation Λ must satisfy $\Lambda^T g \Lambda = g$. That is, $\Lambda \in O(1,3)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- The defining relation $\Lambda^T g \Lambda = g$ implies that $|\det \Lambda| = 1$ and $|\Lambda^0_{0}| \ge 1$ for any $\Lambda \in O(1,3)$.
- O(1,3) has 4 connected components corresponding to different possible signs of det Λ and Λ_0^0 .
- The component connected to the identity is a subgroup, often called the proper orthochronous Lorentz group SO(1,3)⁺.
- We can think of the 4 components as a group: $\{1, P, T, PT\} \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

- To construct a relativistic field theory, we would like our equations of motion for a particular field to hold true in all reference frames. This means the action $S = \int \mathcal{L}(x) d^4x$ should be invariant with respect to any transformation $\Lambda \in SO(1,3)^+$
- The Lagrangian density \mathcal{L} transforms like a Lorentz scalar :

$$\mathcal{L}(x) \to \mathcal{L}(\Lambda^{-1}x)$$

• Consider a multiplet field Ψ_a with n components. It must transform as $\Psi_a(x) \to M_{ab}(\Lambda)\Psi_b(\Lambda^{-1}x)$, where $M_{ab}(\Lambda)$ is an $n \times n$ matrix. This requires us to construct an n-dimensional representation of SO(1, 3)⁺.

(日本) (日本) (日本)

• Linearizing the defining relation about the identity, we find that $x \in \mathfrak{so}(1,3)$ must satisfy $x^T g + gx = 0$. x is a 4×4 matrix, and this relation imposes 10 conditions on the elements of x. We can construct a basis a_1, \ldots, a_6 of the Lie algebra consisting of matrices J_i and K_i for i = 1, 2, 3.

伺下 イヨト イヨト

The Lie algebra $\mathfrak{so}(1,3)$

The J_i are clearly the generators of the SO(3) subgroup. The corresponding one-parameter subgroups are finite spatial rotations.

• • = • • = •

The Lie algebra $\mathfrak{so}(1,3)$

The K_i are the generators of Lorentz boosts.

日本・モン・モン

In this basis, the algebra looks like :

$$[J_i, J_j] = \epsilon_{ijk} J_k$$

$$[J_i, K_j] = \epsilon_{ijk} K_k$$

$$[K_i, K_j] = -\epsilon_{ijk}J_k$$

for i, j = 1, 2, 3

日本・モン・モン

- We can consider the complexification of the Lie algebra, denoted by $\mathfrak{so}(1,3)_{\mathbb{C}}$, in order to construct a basis that is equivalent to a direct sum of Lie algebras (that is, the complexification $\mathfrak{so}(1,3)_{\mathbb{C}}$ is semi-simple)
- Define a new basis through complex linear combinations of the original basis vectors :

$$egin{aligned} ec{m{J}_+} &\equiv rac{1}{2}(ec{m{J}}+iec{m{K}}) \ ec{m{J}_-} &\equiv rac{1}{2}(ec{m{J}}-iec{m{K}}) \end{aligned}$$

同 ト イ ヨ ト イ ヨ ト

This new basis satisfies the following commutation relations:

$$[J_{+}^{i}, J_{+}^{j}] = \epsilon^{ijk} J_{+}^{k}$$

$$[J_-^{i}, J_-^{j}] = \epsilon^{ijk} J_-^{k}$$

$$[J_{+}^{i}, J_{-}^{j}] = 0$$

In this basis, it is clear that $\mathfrak{so}(1,3)_{\mathbb{C}} \cong \mathfrak{su}(2)_{\mathbb{C}} \bigoplus \mathfrak{su}(2)_{\mathbb{C}}$. At the group level we have $SO(1,3)^+ \cong SL(2,\mathbb{C})/\mathbb{Z}_2$.

<回> < 国 > < 国 > < 国 >

- The previous result implies we can characterize a representation of $SO(1,3)^+$ by a pair of half-integer numbers, (s_1,s_2) where $s_1, s_2 = 0, \frac{1}{2}, 1, \ldots$
- The dimension of this representation is $(2s_1 + 1)(2s_2 + 1)$.
- These representations define the possible types of fields which can be described by our relativistically invariant field theory

伺い イヨト イヨト

- $(0,0) \rightarrow$ scalar fields, Φ
- $(\frac{1}{2}, 0) \rightarrow$ left chiral Weyl spinor, ψ_L
- $(0, \frac{1}{2}) \rightarrow$ right chiral Weyl spinor, ψ_R
- $(\frac{1}{2}, \frac{1}{2}) \rightarrow$ four-vector, V^{μ}

伺き イヨト イヨト

Spin $\frac{1}{2}$ fields

- Note that there are two different 2-dimensional representations which are appropriate for describing the transformations of a spin $\frac{1}{2}$ field : $(\frac{1}{2}, 0)$ and $(0, \frac{1}{2})$
- These representations describe Weyl fermions ψ_L and ψ_R of left and right chirality respectively. ψ_L and ψ_R are fundamentally different degrees of freedom - see neutrinos, and electroweak theory.
- Under infinitesimal Lorentz transformations,

$$\begin{split} \psi_L &\to (1 - i\vec{\theta} \cdot \vec{\sigma}/2 - \vec{\zeta} \cdot \vec{\sigma}/2)\psi_L \\ \psi_R &\to (1 - i\vec{\theta} \cdot \vec{\sigma}/2 + \vec{\zeta} \cdot \vec{\sigma}/2)\psi_R \end{split}$$

In the massless limit, a state of definite chirality is also a state of definite helicity.

ロト (高) (ラ) (ラ)

- In QED, one often uses four component Dirac spinors which mix ψ_L and ψ_R
- This corresponds to the $(0, \frac{1}{2}) \bigoplus (\frac{1}{2}, 0)$ representation. The generators are

$$S^{0i} = -\frac{i}{2} \begin{pmatrix} \sigma^i & 0\\ 0 & -\sigma^i \end{pmatrix}$$
$$S^{ij} = \frac{1}{2} \epsilon^{ijk} \begin{pmatrix} \sigma^k & 0\\ 0 & \sigma^k \end{pmatrix}$$

for i, j = 1, 2, 3.

(日本) (日本) (日本)

Э

- One can show that the Klein-Gordon equation, $(\partial^2 + m^2)\Phi(x) = 0$ is invariant under the transformation $\Phi(x) \rightarrow \Phi(\Lambda^{-1}x)$
- Similarly, the Dirac equation $(i\gamma^{\mu}\partial\mu m)\psi(x) = 0$ is invariant under the transformation $\psi(x) \rightarrow \exp(-\frac{i}{2}\omega_{\mu\nu}S^{\mu\nu})\psi(\Lambda^{-1}x)$
- And, the Weyl equations $i\overline{\sigma}^{\mu}\partial_{\mu}\psi_L = 0$ and $i\sigma^{\mu}\partial_{\mu}\psi_R = 0$ are invariant under transformations of ψ_L and ψ_R under the 2-dimensional fundamental / anti-fundamental reps. of SU(2) respectively.

(日本) (日本) (日本)

Important note : SO(1,3) is non-compact. This means that the finite-dimensional representations are not unitary - we can see this by looking at the boost component of the general transformation. In a quantum theory we need unitary representations. Basis states of the Hilbert space of a quantum field theory transform under unitary *infinite*-dimensional representations of the full Poincaré group.

伺下 イヨト イヨト

- The Poincaré group is also known as the inhomogeneous Lorentz group, or ISO(1,3). This group contains all of SO(1,3) as a subgroup, with 4 additional generators P^μ that generate translations in spacetime.
- We can outline the strategy for classifying the infinite-dimensional unitary representations of the Poincaré group.

伺下 イヨト イヨト

Infinite dimensional reps. of the Poincaré group

- Consider the abelian invariant subgorup *T*₄ of ISO(1,3) (the translation group in four dimensions).
- Basis vectors of our representation are built out of eigenvectors of the generators of this group (P^µ), plus those of commuting operators from the Lie algebra of the little group.
- Basis vectors are characterized by their eigenvalues with respect to quadratic Casimir operators : $C_1 = P_{\mu}P^{\mu}$ (eigenvalue $c_1 = \text{mass}$) and $C_2 = W_{\lambda}W^{\lambda}$, where

$$W^{\lambda} \equiv \epsilon^{\lambda\mu\nu\sigma} J_{\mu\nu} P_{\sigma}/2$$

is called the Pauli-Lubanski vector.

・ 同 ト ・ ヨ ト ・ ヨ ト

Four possible cases :

•
$$c_1 = 0, p^{\mu} = 0$$
 (vacuum)

•
$$c_1 > 0$$
 (massive particle)

•
$$c_1 = 0, p^{\mu} \neq 0$$
 (massless particle)

• $c_1 < 0$

Each case leads to a different little group of the factor group SO(1,3). Each irreducible unitary representation of the little group then induces an irreducible unitary representation of the full Poincaré group.

The little group is the subgroup of the factor group $ISO(1,3)/T_4 \cong SO(1,3)$ which leaves the test vector invariant. In this case, the little group is the full homogeneous Lorentz group SO(1,3).

For a massive particle, we can always boost to a rest frame where $p^{\mu} = (M, 0, 0, 0)$. In this case the little group is just the rotation group, SO(3). The basis vectors we will choose will satisfy:

 $P^{\mu} \left| \mathbf{0} \lambda \right\rangle = p^{\mu} \left| \mathbf{0} \lambda \right\rangle$

$$J^{2} \left| \mathbf{0} \lambda \right\rangle = s(s+1) \left| \mathbf{0} \lambda \right\rangle$$

$$oldsymbol{J}_{3}\left|oldsymbol{0}\lambda
ight
angle=\lambda\left|oldsymbol{0}\lambda
ight
angle$$

Here, **0** is labeling the three-momentum $\vec{p} = 0$.

・ロ と く 聞 と く 臣 と く 臣 と

By acting on these basis vectors with elements of SO(1,3) not in the little group, we can obtain a general state $|p\lambda\rangle$. The result is a representation of the Poincaré group labeled by (M, s) that is irreducible, unitary and infinite-dimensional.

(日本) (日本) (日本)

This corresponds to a massless particle moving with some momentum ω , so we can write the four-momentum as $p^{\mu} = (\omega, 0, 0, \omega)$. The little group is even smaller: SO(2). The main difference is that in this case, the helicity λ is Lorentz invariant.

(日本) (日本) (日本)

Result:

- Massless states are identified with basis vectors of infinite-dimensional irreps. labeled by a momentum *p* and a helicity λ. There are two distinct possible states corresponding to either λ = s or λ = -s for some s = 0, ¹/₂, 1, ...
- Massive states are identified with basis vectors of infinite-dimensional irreps. labeled by a mass *M*, a momentum *p*, and a helicity λ = -s,..., s for some s = 0, ¹/₂, 1,...

- Group Theory in Physics, by Wu-Ki Tung
- Group Theory in Physics, Vol. 2, by J.F. Cornwell
- The Quantum Theory of Fields, Vol. 1, by Steven Weinberg
- *An Introduction to Quantum Field Theory*, by Michael Peskin and Daniel Schroeder