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Classical Analogy

» Imagine trying to balance a rotationally symmetric pencil on a
point. Any tiny perturbation would destabilize the unstable
equilibrium and cause it to topple over.

» A collision with an air molecule or, even if in vacuum, a stray
cosmic ray or quantum fluctuation would cause the pencil to
fall over.

> In a perfect mathematical world, this rotational symmetry
would be realized, but in the real and messy universe we exist
in, we say these would-be symmetries are spontaneously
broken.



Quantum Mechanically

» Similar to the classical analogy, one could imagine an
electron’s magnetic moment anti-aligned with an external
magnetic field. This exemplifies another unstable equilibrium.

» We, however, want to generalize our search for spontaneously
broken symmetries to symmetries beyond what we can

intuitively imagine. Hence, for arbitrary potentials, we search
for local maxima.



Discrete Symmetry Example
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Consider the Lagrangian £ = %(8,@)(8’%)) — %m2¢2 — %‘JSZL
We then have a potential V(¢) = 3m?¢? + 2 ¢*

Consider a scenario in which we have m? < 0 and \ > 0.
More obvious if we let m*> = —p2 <0
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Then our potential appears quartic with a local maximum and
two minima. V(¢) = —%,u2¢2 + %qb“



> V(o) = + a0t

> It is energetlcally favorable for ¢ to take the values that
minimize the potential V/(¢).




» We can find the minima by solving %’¢:v =0

> — (,uz—%vz)v — v ==+ %
» What does this have to do with SSB? Recall how our

Lagrangian

1 1 A
L= 5(0u0)(0"0) — 5m*¢" — 10"

is invariant under ¢ — —¢. This is the spontaneously broken
symmetry which, despite our Lagrangian being invariant
under, is not obeyed by the ground state.



Mexican Hat

» Consider the Lagrangian
L = 3(0u0)"(0"9) — m*¢"¢ — 3(¢*0)?

» We then have a potential V(¢) = m?¢*¢ + %((b*qb)z

» Again, suppose m?> = —u? < 0 and A > 0 We now look for
the values of ¢ € C for which V/(¢) is minimal.
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» As in the previous example, we can find the minima: |¢|? = 5

> Recall how our Lagrangian

A
L= 2(0,0)°(0"6) — mPg6 — (670

is invariant under U(1). This is the spontaneously broken
symmetry which, despite our Lagrangian being invariant
under, is not obeyed by the ground state.




We can now parameterize our field

b= \}Q(Hp) exp[im/v]

where p indicates perturbations about the equilibrium position
and 7 is some complex phase. (p, 7 € R)

We can re-express our Lagrangian
1 " 1 " P2
L= 5(0u0)(@"0) + H@um)(@m)(1 + L)

A 2
+Rv2 - A (g) p? + higher order p terms

Note that while p has both a kinetic and a mass term, 7 only
has a kinetic term. = m is a massless particle.



Goldstone Theorem

» The spontaneous breaking of a continuous global symmetry
implies the existence a massless particle. (Keep in mind for
later examples)

» Mathematically: There corresponds a massless particle to
every generator of a continuous global symmetry that does
not annihilate the ground state.



Higgs Mechanism

> Let’s now consider the spontaneous breaking of gauge
symmetries.

» Let's complicate our "mexican hat” Lagrangian by including a
gauge field term and including a covariant derivative.

1 . w o Ak 1
L= 5(Du@)"(D'e) = m*¢"¢ — 2(¢"0)* — L F* Fu
» Substituting ¢ = \%(v + p)exp [il] and performing the

v
10um

b=, we have:

transformation of the gauge field: A, — A, +

1
L= §e2v2AuA“ + (p, A, and their interactions terms)

» In words: Higgs Mechanism gives otherwise massless fields
mass via spontaneous symmetry breaking.



Summary of Higgs Mechanism

» Say we have the spontaneous breaking of group G — H.

» Gauge bosons corresponding to the generators that do not
annihilate the ground state become massive. (Higgs
Mechanism)

» The remaining gauge bosons stay massless.



Example: Triplet of Scalars Bosons

» Consider a triplet of scalar bosons interacting with a gauge

field A,
L= P F (0 8E AP+ 2 12(6 )~ g NG9
4" 28 4

» This Lagrangian is invariant under the gauge transformations:

L L1
Au_>Au+€XAu+§3ug

6= d+Exe



We can realize SSB if we let the third component of the scalar
feild have a nonzero vacuum expectation value, that is:

(0] ¢3|0) = v, and we define qu- = ¢; — 03V

Therefore we have < ¢ >= 0 and the Lagrangian becomes:

1 bd bnd 1 1 -
L=—7(0uA ~ O AL + igvz(A%M +A3,) + 5(c‘)uqbf)%r
1 .

[5( 2 WA (@ ¢ — MPPE)] + (1® — AvP) vy + interactions
We find, in a similar manner to above, that v = “72

We observe that that the gauge bosons A,1, A > get masses
gv?, while A,3 remains massless. Hence the gauge symmetry
of the Lagrangian has been reduced from SU(2) to U(1).



» Furthermore one can read from the Lagrangian that ¢} and
¢, have no mass terms, and thus are the massless Goldstone
bosons.

» The general feature of this type of symmetry breaking is to
have as many zero-mass scalar bosons as massive gauge
bosons.



» A more intuitive example is

-,

V() = 5426 §) + TN 3

: e oo 2 . :
» This potential is minimized for ¢ - ¢ = &-. This is obviously
invariant under O(3). Furthermore we can construct any such

vector q_g by rotating ¢3 = \/u2/\ using O(3). From this form
it is obvious that the symmetry group O(2) is left unbroken.



General Procedure

1. Choose a particular representation for the scalar boson and
write down the most general group-invariant potential V/(¢)
which is a fourth order polynomial of scalar fields.

2. Find the minimum of V/(¢) by solving the equation a‘ggb) —0

3. Calculate the number of massless gauge bosons and therefrom
determine the unbroken symmetry.



O(n) Symmetry Breaking

Representation | O(n)
vector O(n)
k-vector O(n — k)
2nd-rank symmetric tensor O(n—1) or O(I)(n—1),1 = [3n]
2nd-rank anti-symmetric tensor U(l) or U(1)(n—2)

Table 1: Summary of the Pattern of Symmetry Breaking of O(n)



SU(n) Symmetry Breaking

Representation SU(n)
vector SU(n—1)
k-vector SU(n— k)
2nd-rank symmetric tensor SU(n—1) or O(n)

2nd-rank anti-symmetric tensor 0(2/+1)

or SU(n—2),l = [3n]

adjoint representation SU(I) x SU(n—1) x U(1)
or SU(n—1),/ = [3n]

Table 2: Summary of the Pattern of Symmetry Breaking of SU(n)



Pseudo-Goldstone Bosons

» The quantum chromodynamics Lagrangian exhibits an
approximate symmetry. In the limit of the quarks masses
being approximately zero, a SU(3),. X SU(3)r symmetry is
realized and spontaenously broken.

» This leads to " pseudo” Goldstone bosons with masses
approximately zero.
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