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Classical Analogy

I Imagine trying to balance a rotationally symmetric pencil on a
point. Any tiny perturbation would destabilize the unstable
equilibrium and cause it to topple over.

I A collision with an air molecule or, even if in vacuum, a stray
cosmic ray or quantum fluctuation would cause the pencil to
fall over.

I In a perfect mathematical world, this rotational symmetry
would be realized, but in the real and messy universe we exist
in, we say these would-be symmetries are spontaneously
broken.



Quantum Mechanically

I Similar to the classical analogy, one could imagine an
electron’s magnetic moment anti-aligned with an external
magnetic field. This exemplifies another unstable equilibrium.

I We, however, want to generalize our search for spontaneously
broken symmetries to symmetries beyond what we can
intuitively imagine. Hence, for arbitrary potentials, we search
for local maxima.



Discrete Symmetry Example

I Consider the Lagrangian L = 1
2(∂µφ)(∂µφ)− 1
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2φ2 − λ

4!φ
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I We then have a potential V (φ) = 1
2m

2φ2 + λ
4!φ
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I Consider a scenario in which we have m2 < 0 and λ > 0.
More obvious if we let m2 → −µ2 < 0

I Then our potential appears quartic with a local maximum and
two minima. V (φ) = −1
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I V (φ) = −1
2µ

2φ2 + λ
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I It is energetically favorable for φ to take the values that
minimize the potential V (φ).



I We can find the minima by solving ∂L
∂φ
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= 0

I =⇒
(
µ2 − λ

6 v
2
)
v =⇒ v = ±

√
6µ2

λ

I What does this have to do with SSB? Recall how our
Lagrangian

L =
1

2
(∂µφ)(∂µφ)− 1

2
m2φ2 − λ

4!
φ4

is invariant under φ→ −φ. This is the spontaneously broken
symmetry which, despite our Lagrangian being invariant
under, is not obeyed by the ground state.



Mexican Hat

I Consider the Lagrangian
L = 1

2(∂µφ)∗(∂µφ)−m2φ∗φ− λ
4 (φ∗φ)2

I We then have a potential V (φ) = m2φ∗φ+ λ
4 (φ∗φ)2

I Again, suppose m2 = −µ2 < 0 and λ > 0 We now look for
the values of φ ∈ C for which V (φ) is minimal.



I As in the previous example, we can find the minima: |φ|2 = v2

2

I Recall how our Lagrangian

L =
1

2
(∂µφ)∗(∂µφ)−m2φ∗φ− λ

4
(φ∗φ)2

is invariant under U(1). This is the spontaneously broken
symmetry which, despite our Lagrangian being invariant
under, is not obeyed by the ground state.



I We can now parameterize our field

φ =
1√
2

(v + ρ) exp [iπ/v ]

where ρ indicates perturbations about the equilibrium position
and π is some complex phase. (ρ, π ∈ R)

I We can re-express our Lagrangian

L =
1

2
(∂µρ)(∂µρ) +

1

2
(∂µπ)(∂µπ)(1 +

ρ

v
)2

+
λ

16
v2 − λ

(v
2

)2
ρ2 + higher order ρ terms

I Note that while ρ has both a kinetic and a mass term, π only
has a kinetic term. =⇒ π is a massless particle.



Goldstone Theorem

I The spontaneous breaking of a continuous global symmetry
implies the existence a massless particle. (Keep in mind for
later examples)

I Mathematically: There corresponds a massless particle to
every generator of a continuous global symmetry that does
not annihilate the ground state.



Higgs Mechanism

I Let’s now consider the spontaneous breaking of gauge
symmetries.

I Let’s complicate our ”mexican hat” Lagrangian by including a
gauge field term and including a covariant derivative.

L =
1

2
(Dµφ)∗(Dµφ)−m2φ∗φ− λ

4
(φ∗φ)2 − 1

4
FµνFµν

I Substituting φ = 1√
2

(v + ρ)exp
[
i πv
]

and performing the

transformation of the gauge field: Aµ → Aµ + 1
e
∂µπ
v , we have:

L =
1

2
e2v2AµA

µ + (ρ, Aµ and their interactions terms)

I In words: Higgs Mechanism gives otherwise massless fields
mass via spontaneous symmetry breaking.



Summary of Higgs Mechanism

I Say we have the spontaneous breaking of group G → H.

I Gauge bosons corresponding to the generators that do not
annihilate the ground state become massive. (Higgs
Mechanism)

I The remaining gauge bosons stay massless.



Example: Triplet of Scalars Bosons

I Consider a triplet of scalar bosons interacting with a gauge
field ~Aµ

L = −1

4
~Fµν · ~Fµν+

1

2
[(∂µ−g~t · ~Aµ)φ]2+

1

2
µ2(~φ ·~φ)− 1

4
λ(~φ ·~φ)2

I This Lagrangian is invariant under the gauge transformations:

~Aµ → ~Aµ + ~ε× ~Aµ +
1

g
∂µ~ε

~φ→ ~φ+ ~ε× ~φ



I We can realize SSB if we let the third component of the scalar
feild have a nonzero vacuum expectation value, that is:

〈0|φ3 |0〉 = v , and we define φ′i ≡ φi − δi3v

I Therefore we have < φ′i >= 0 and the Lagrangian becomes:

L = −1

4
(∂µ ~Aν − ∂ν ~Aµ)2 +

1

2
gv2(A2

1µ + A2
2µ) +

1

2
(∂µ~φ′)

2+

[
1

2
(µ2−λv2)(~φ′ · ~φ′−λv2φ′32)] + (µ2−λv2)vφ′3 + interactions

I We find, in a similar manner to above, that v =
√

µ2

λ

I We observe that that the gauge bosons Aµ1, Aµ2 get masses
gv2, while Aµ3 remains massless. Hence the gauge symmetry
of the Lagrangian has been reduced from SU(2) to U(1).



I Furthermore one can read from the Lagrangian that φ′1 and
φ′2 have no mass terms, and thus are the massless Goldstone
bosons.

I The general feature of this type of symmetry breaking is to
have as many zero-mass scalar bosons as massive gauge
bosons.



I A more intuitive example is

V (φ) = −1

2
µ2(~φ · ~φ) +

1

4
λ(~φ · ~φ)2

I This potential is minimized for ~φ · ~φ = µ2

λ . This is obviously
invariant under O(3). Furthermore we can construct any such
vector ~φ by rotating φ3 =

√
µ2/λ using O(3). From this form

it is obvious that the symmetry group O(2) is left unbroken.



General Procedure

1. Choose a particular representation for the scalar boson and
write down the most general group-invariant potential V (φ)
which is a fourth order polynomial of scalar fields.

2. Find the minimum of V (φ) by solving the equation ∂V (φ)
∂φ = 0

3. Calculate the number of massless gauge bosons and therefrom
determine the unbroken symmetry.



O(n) Symmetry Breaking

Representation O(n)

vector O(n)
k-vector O(n − k)

2nd-rank symmetric tensor O(n − 1) or O(l)(n − l), l = [12n]
2nd-rank anti-symmetric tensor U(l) or U(1)(n − 2)

Table 1: Summary of the Pattern of Symmetry Breaking of O(n)



SU(n) Symmetry Breaking

Representation SU(n)

vector SU(n − 1)
k-vector SU(n − k)

2nd-rank symmetric tensor SU(n − 1) or O(n)
2nd-rank anti-symmetric tensor O(2l + 1)

or SU(n − 2), l = [12n]
adjoint representation SU(l) × SU(n − l) × U(1)

or SU(n − 1), l = [12n]

Table 2: Summary of the Pattern of Symmetry Breaking of SU(n)



Pseudo-Goldstone Bosons

I The quantum chromodynamics Lagrangian exhibits an
approximate symmetry. In the limit of the quarks masses
being approximately zero, a SU(3)L × SU(3)R symmetry is
realized and spontaenously broken.

I This leads to ”pseudo” Goldstone bosons with masses
approximately zero.
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