
Quasicrystals
A new kind of symmetry

Sandra Nair



First, definitions
● A lattice is a poset in which every element has a unique infimum and 

supremum. For example, the set of natural numbers with the notion of 
ordering by magnitude (1<2). For our purposes, we can think of an array of 
atoms/molecules with a clear sense of assignment. 

● A Bravais lattice is a discrete infinite array of points generated by linear 
integer combinations of 3 independent primitive vectors:  {n1a1 + n2a2 + 
n3a3 | n1, n2, n3 ∈ Z}.

● Crystal structures = info of lattice points + info of the basis (primitive) vectors.
● Upto isomorphism of point groups (group of isometries leaving at least 1 fixed 

point), 14 different Bravais lattice structures possible in 3D.





Now, crystals...
● Loosely speaking, crystals are molecular arrangements built out of multiple 

unit cells of one (or more) Bravais lattice structures.
● Crystallographic restriction theorem: The rotational symmetries of a 

discrete lattice are limited to 2-, 3-, 4-, and 6-fold.
● This leads us to propose a “functional” definition: A crystal is a material that 

has a discrete diffraction pattern, displaying rotational symmetries of orders 2, 
3, 4 and 6.

● Note: Order 5 is a strictly forbidden symmetry → important for us.



Tessellations aka tilings
Now that we have diffraction patterns to work with, we consider the question of 
whether a lattice structure tiles or tessellates the plane. This is where the order of 
the symmetry plays a role. The crystals are special, as they display translational 
symmetries. As such, the tiling of their lattice structures (which we could see 
thanks to diffraction patterns) are periodic- they repeat at regular intervals.



Tilings continued
A tiling is non-periodic if it admits no translations. A set of tiles is aperiodic if it 
admits only non-periodic tilings. Classic example: Penrose tilings. This particular 
example exhibits reflection symmetry and five-fold rotational symmetry, as well 
as self-similarity common in fractals. It appears locally periodic, hence the term 
quasiperiodicity of tiling, which still exhibits long range order. This is the feature 
that distinguishes a quasicrystal from a crystal.

Medieval Islamic artists used them extensively.



History of the not-a-crystal
In 1982, Dov Levine and Paul J. Steinhardt analytically computed the diffraction 
pattern of an ideal quasicrystal, following their mathematical discovery by 
Penrose, who had generalized the notion of a crystal to structures with 
quasiperiodic translational order. Upon classification of two- and three-dimensional 
quasicrystals by their symmetry under rotation, it was seen that many disallowed 
crystal symmetries are allowed quasicrystal symmetries, as we previously saw 
with the Penrose tiling. Their motivation was powered by physics- Daniel 
Schechtman’s discovery of the strange electron diffraction pattern exhibited by a 
rapidly cooled alloy of Al (86%) and Mn (14%), which exhibited the hitherto 
forbidden 5-fold symmetry.





Approach of Original Calculations 
1) Find lattice positions of each point in a simple k-QC, where k is the number of 

linearly independent (incommensurate) lattice spacings along each lattice 
vector direction. 

2) Obtain diffraction pattern by taking Fourier transform of delta functions 
summed over each lattice position.

3) Compare with actual diffraction pattern obtained by Schechtman.

Remark: In fact, strange diffraction patterns were observed as early as 1930’s, but 
the language of quasiperiodicity wasn’t available to describe the results.





Important results
● For all disallowed crystalline symmetries in 2D constructed from a regular 

polygon with E edges, a quasicrystal is possible for E=8, p, or 2p, where p is 
a prime number greater than 3; then k = [E/2] for E odd and [E/4] for E even, 
where [n] is the greatest integer less than n. 

● A similar argument can be used for 3D to show that icosahedral, tetrahedral, 
and octahedral quasicrystals are possible with k = 2.

● As for the computed case, the predicted diffraction pattern is composed of 
Bragg peaks which densely fill reciprocal space in a self-similar pattern.

● Operations of periodicity 5 in the icosahedral quasicrystals generate the 
golden ratio. (Not making this up!)

● Conjecture: Atomic arrangement with quasicrystal symmetries should be less 
dense than a dense-random-packed solid, with confined vacant volumes 
distributed quasiperiodically throughout the structure.



Relation to root lattices
● Finite reflection groups can be classified into crystallographic and 

non-crystallographic reflection groups. In the crystallographic reflection 
groups, as per the restriction theorem, we can have orders 2, 3, 4, and 6.

● The crystallographic point group of a root lattice coincides with the 
automorphism group of the corresponding root system, where each reflecting 
hyperplane is specified by a vector (root) perpendicular to it.

● As one might expect, the symmetries exhibited by the roots systems has a 
direct counterpart in physical (quasi)crystalline structures.

● M Baake, et al. showed that root lattices and their reciprocals might serve as 
the right pool for the construction of quasicrystalline structure models. All 
non-crystallographic symmetries observed so far are covered in minimal 
embedding with maximal symmetry. 



Classification of QC’s
Structural classification:-

1) Quasiperiodic in two dimensions (polygonal or dihedral quasicrystals) - There 
is one periodic direction perpendicular to the quasiperiodic layers. 

● Octagonal quasicrystals with local 8-fold symmetry [primitive & 
body-centered lattices] e.g. Mn4Si, Cr5Ni3Si2

● Decagonal quasicrystals with local 10-fold symmetry [primitive lattice] e.g. 
Al-Co-Ni, Al5Ir

● Dodecagonal quasicrystals with local 12-fold symmetry [primitive lattice] e.g. 
V3Ni2, Cr70.6Ni29.4



2) Quasiperiodic in three dimensions - no periodic direction 

● Icosahedral quasicrystals with 5-fold [primitive, body-centered & face-centered 
lattices] e.g. Al-Pd-Mn, Al-Cu-Fe, Ag-In-Yb

● Icosahedral quasicrystal with broken symmetry e.g. stable binary Cd5.7Yb

Quasicrystal of an alloy of aluminium, copper and iron, displaying icosahedral 
symmetry.



Thermal classification:-

● Stable quasicrystals grown by slow cooling or casting with subsequent 
annealing 

● Metastable quasicrystals prepared by melt-spinning. 
● Metastable quasicrystals formed by the crystallization of the amorphous 

phase. 



Electrical properties
● QC alloys do not belong to the conductor or insulator family. Conductivity 

restored upon heating.
● Electron density at the Fermi level in QC is smaller than in metals by a factor 

of only 3-10. So, QC’s cannot be classified as semiconductors.
● The hierarchical packing of clusters in the structure along with the strong 

Coulomb interaction lead to repeated (so-called recurrent) localization of the 
bonding electrons. Phonon-assisted hopping conductivity may then generate 
“antipairing” in much the same way as the inverse (i.e., pairing) produces 
superconductivity. 







Practical applications in day-to-day lives
● Non-sticking+hardness+corrosion resistance+low thermal conductivity = 

almost ideal material for coating frying pans or other cookware.
● Low friction coefficient +high hardness+corrosion resistance = reduction in 

surface damage and energy dissipation in the moving contact between two 
solids. Quasicrystalline cylinder liners and piston coatings in motor-car 
engines results in reduced air pollution and increased engine lifetimes. When 
combined with biocompatibility, QC has a promising future in surgical 
applications as a coating on metallic parts used for bone repair and 
prostheses. 

● At high temperatures, QC’s become superplastic. Rocket motors and 
aero-engine turbines would greatly benefit, since QC’s can accommodate 
thermal constraints and the thermal expansion of the protected bulk material.



QC as an assistant to H-fuel
● Hydrogen storage is a key issue preventing the development of 

hydrogen-powered automobiles. 
● Hydrogen atoms can be absorbed into either interstitial sites or on surfaces of 

materials. The recovery of the hydrogen requires heating the material to high 
temperatures above 400C. 

● In the mid 1990s, TiZrHf-based quasicrystals were demonstrated to store 
more hydrogen than competing crystal intermetallic phases. The numerous 
tetrahedral interstitial sites in icosahedral quasicrystals, structurally favourable 
sites for hydrogen absorption, give these novel phases potential technological 
importance.
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