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Introduction

The Quantum Harmonic Oscillator

For our discussion, we will deal with the harmonic oscillator in 1 dimension!

The Hamiltonian

Ĥ = −~2 P̂2

2m
+

1
2

mωX̂ 2 (1)

â :=
1

√
2~mω

(
mωQ̂ + i P̂

)
â† :=

1
√

2~mω

(
mωQ̂ − i P̂

) (2)

=⇒ Ĥ = ~ω
(

â†â +
1
2

)
(3)
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Minimal Uncertainty States

Minimal Uncertainty States

For the QHO, lets calculate ∆X∆P.

Show ∆X∆P =

Starting with:

X̂ =

√
~

2mω

(
â + â†

)
P̂ = −i

√
~mω

2

(
â− â†

) (4)

With this we have:

∆x∆p =

√
〈n| X̂ 2 |n〉 − 〈n| X̂ |n〉2

√
〈n| P̂2 |n〉 − 〈n| P̂ |n〉2 (5)

=
~
2

(2n + 1) (6)

We see that n = 0 saturates the Heisenberg Uncertainty relation: ∆x∆p ≥ ~
2 .

Gavin Rockwood UCSC Coherent States in Quantum Mechanics June 14, 2019 5 / 27



Coherent States of the Quantum Harmonic Oscillator General Coherent States Applications References

Minimal Uncertainty States

Another Minimal Uncertainty State

Lets define the following state:

|z〉 = e−
1
2 |z|

2
∞∑

n=0

zn
√

n!
|n〉 ; z ∈ C (7)

This state is exciting because â |z〉 = z |z〉. Also 〈z|z〉 = 1. Its good to note that |z〉
can also be written as:

|z〉 = e−
1
2 |z|

2+zâ |0〉 (8)

Note!
It is worth noting that there is a yet unmentioned way to write |z〉 that will be discussed
shortly
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Minimal Uncertainty States

Another Minimal Uncertainty State Continued

As mentioned, |z〉 is a minimal uncertainty state. To see this:

Proof that |z〉 is a minimal uncertainty state.

Starting with:

〈z| X̂ |z〉 =

√
~

2mω

(
〈z| â |z〉+ 〈z| â† |z〉

)
=

√
~mω

2
(z + z∗)

〈z| P̂ |z〉 = −i

√
~mω

2
(z − z∗)

〈z| X̂ 2 |z〉 =

√
~

2mω

(
(z + z∗)2 + 1

)
〈2| P̂2 |z〉 = sqrt

~mω
2

(
(z − z∗)2 − 1

)
(9)

With this:
∆x∆p =

~
2

(10)
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The Displacement Operator

The Translation Operator

Let us define the following operator, called the Heisenberg-Weyl Translation operator.

T̂ (z) = e
i
~ (pQ̂−qP̂),

1
√

2~mω
(mωq + ip) ∈ C (11)

This operator can also be written in terms of creation and annihilation operators:

T̂ (z) = ezâ†−z∗â (12)

This last version is the one most commonly seen in discussions about coherent states.

We will go back and explore the Heisenberg-Weyl group in greater depth when we talk
about general coherent states
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The Displacement Operator

The Action of T̂ (z) on Q̂ and P̂

We are after T̂ (z)Q̂T̂−1(z) and T̂ (z)P̂T̂−1(z).

Start with T̂ (z)âT̂−1(z).

T̂ (z)âT̂−1(z) = â−
[
â, zâ† − z∗â

]
= â− z

By expanding â, z in terms of Q̂, P̂, q, p we get:

T̂ (z)Q̂T̂−1(z) = Q̂ − q

T̂ (z)P̂T̂−1(z) = P̂ − p
(13)
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The Displacement Operator

|z〉 from D̂(z)

Earlier I mentioned that there was another way to write |z〉 and that is as:

|z〉 = D̂(z) |0〉 (14)

Some Quick Observations

If we let φz be the position wavefunction of |z〉 then:

T̂ (0) |0〉 = |0〉 =⇒ T̂ (0)φ0 = φ0 where φ0 is the groundstate wavefunction of the
harmonic oscillator. In other words, the groundstate is a coherent state.

T̂ (z)φ0(x) = e−
i

2~ qpe
i
~ xpφ0(x − q)

T̂ (z)F [φ0](k) = e−
i

2~ qpe
i
~ qkF [φ0](k − p)

(15)

Where F [φ0](k) is the Fourier transform of φ0. Here, we see that |z〉 is now
localized at Q̂ = q and P̂ = p in phase space.
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The Displacement Operator

Time Evolution!

The time evolution of T̂ (z) is given by:

T̂ (zt ) = e−iHHOt/~T̂ (z0)eiHHOt/~ (16)

With this, the time evolution of a coherent state is given by:

e−iHHOt/~ |z0〉 = |z(t)〉 , z(t) = eiωt z0 (17)

Time Evolution of 〈Q〉 and 〈P〉

〈z(t)| Q̂ |z(t)〉 = p0 sin(ωt)− q0 cos(ωt)

〈z(t)| P̂ |z(t)〉 = −q0 sin(ωt)− p0 cos(ωt)
(18)
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General Coherent States

Gavin Rockwood UCSC Coherent States in Quantum Mechanics June 14, 2019 12 / 27



Coherent States of the Quantum Harmonic Oscillator General Coherent States Applications References

Definition

Definition of General Coherent State

Let G be an arbitrary Lie group and T be an irreducible representation acting on a Hilbert
space H. Pick a vector |ψ0〉 ∈ H, then the coherent state system {T , |ψ0〉} is the set
{|ψ〉 ∈ H s.t. |ψ〉 = T (g) |ψ0〉 , g ∈ G}.

Now, we will want to look at a subgroup H =
{

g ∈ G s.t. T (g) |ψ0〉 = eiα(g) |ψ0〉
}

. H is
the isotropy group of |ψ0〉.

Definition
Then a general coherent state |ψg〉 = g |ψ0〉 is determined by a point x = x(g) in the
coset space G/H such that |ψg〉 = eiα(x) |x〉.
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Heisenberg-Weyl Group

Looking at the Heisenberg - Weyl Group

They algebra of the Heisenberg-Weyl group in n dimensions (denoted as Wn is generated
by I, Q1, ...Qn and P1, ...Pn.[

Qi ,Qj
]

=
[
Pi ,Pj

]
= [I,Qi ] = [I,Pi ] = 0[

Qi ,Pj
]

= δij~I
(19)

The Lie Algebra hn is generated by I → i Î, Q → iQ̂ and P → i P̂. Thus, any element of
hn can be written as:

Ŵ =
it
2~

I+
i
~

(
p · Q̂ − q · P̂

)
=

it
2~

+
i
~

L̂(z), L̂(z) :=
(

p · Q̂ − q · P̂
)
, z = (q, p) ∈ R2n

(20)
So, eŴ = e

it
2~ e

i
~ L̂(z) = e

it
2~ T̂ (z)
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Heisenberg-Weyl Group

Some Properties of T̂

The product of T̂ (z) and T̂ (z′).

T̂ (z)T̂ (z′) = e−
i

2~ (q·p′−p·q′)T̂ (z + z′) ∈ Wn (21)

The identity operator is eŴ (t=0,z=0) and for a given state |ψ〉, the isotropy group is given
by Hn =

{
eŴ (t,0)

}
∼= U(1).

The set of coherent operators is Wn/Hn ={
T̂ (z), z = (q, p) ∈ R2n

}
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Heisenberg-Weyl Group

So Back to the Harmonic Oscillator

If we go back to the harmonic oscillator, we had a ground state |0〉, The group we are
considering is W1, the isotropy group is still

{
eŴ (t=0,z=0

}
∼= U(1). Thus coherent

states of the Heisenberg-Weyl group are generated by T (z), z = (q, p) ∈ R2.
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Heisenberg-Weyl Group

A Few More Notes on the Harmonic Oscillator

The set
{

T̂ (z) |0〉
}

is complete but not necessarily orthogonal:

〈
z′|z

〉
= 〈0| T̂−1(z′)T̂ (z) |0〉 (22)

= 〈0|T (−z′)T (z) |0〉 (23)

= e
i

2~ (q′p−p′q) 〈0| T̂ (z′ + z) |0〉 (24)

= exp

[
i

2~
(
q′p − p′q

)
−

(q′ − q)2 + (p′ − p)2

4~

]
(25)

6= 0 (26)

This last part comes from the fact 〈0| T̂ (z) |0〉 = exp
(
− q2+p2

4~

)
. This implies{

T̂ (z) |0〉
}

is in fact overcomplete.
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Coherent Spin States

Minimal Uncertainty States

Let |j,m〉 be a state of spin j and z projection m. Then J3 |j,m〉 = m |j,m〉 and
J2 |j,m〉 = j(j + 1) |j,m〉. The uncertainty relation ∆J1∆J2 ≥ 1

2 〈J3〉.

∆J1∆J2 =
1
2

(
j(j + 1)−m2

)
(27)

States of minimal uncertainty are given by m = ±j .
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Coherent Spin States

Sooo, whats G and H?

Our Lie group for this system is G = SU(2). With this, we can go back to our definition
of a general coherent state. The isotropy group is U(1) and thus the phase space is
SU(2)/U(1) which is topologically equivalent to S2.

Now! Lets construct them!
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Coherent Spin States

Constructing Spin Coherent States Defining Some Ladder Operators

Lets start by defining:

Ladder Operators!

Ĵ± = Ĵ1 ± i Ĵ2 (28)

where
Ĵ± |j,m〉 =

√
(j ∓m)(j ±m + 1) |j,m ± 1〉 (29)

and [
Ĵ3, Ĵ±

]
= ±Ĵ±[

Ĵ+, Ĵ−
]

= 2Ĵ3

(30)
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Coherent Spin States

Ok, Now Start to Construct Spin Coherent States

We begin by defining an operator:

D̂(ξ) = eξĴ+−ξ∗ Ĵ− , ξ = − tan

(
θ

2

)
e−iφ (31)

Then, in a similar fashion as earlier, a coherent state is defined as:

|ξ〉 = D̂(ξ) |j,−j〉 =

j∑
m=−j

[
(2j)!

(j + m)(j −m)

] 1
2

(1 + |ξ|2)−jξj+µ |j,m〉 (32)
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Applications
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Coherent States in Optics

The Squeeze Operator

The squeeze operator is defined as:

S(ζ) := e
1
2

(
ζ∗a2−ζa†2

)
, ζ = reiθ (33)
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Coherent States in Optics

Why are These Useful?

Optical Communication: Helps improve signal to noise ratio

Interferometry: LIGO!

Some weird quantum information stuff
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Coherent States in Superfluids

Coherent States of Fields

Superfluids are discussed in terms of bosonic fields. So with that in mind, lets define:

|zk 〉 = e−
1
2 |z|

2
∞∑
nk

zn
k√
nk !
|nk 〉 (34)

Where nk is the number of states in the k th mode of the field. We have the completeness
relation:

1
π

∫
dzk |zk 〉 〈zk | = 1 (35)

The set of all states of the form
∏

k |zk 〉 form a complete set of states.
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Coherent States in Superfluids

Free Energy of |{z}〉

The free energy of |{z}〉 is given by:

F {z} = −kb ln

[
〈{z}| exp

(
−

Ĥ(0) − µN̂
kbT

)
|{z}〉

]
(36)

Which to first order goes like:

F{0}{z} = −kb
∑

k

e
−

1
2 ~ω−µ

kbT |zk |2
 (37)

This is a good approximation for a Bose-Einstein condensate. Adding a quadratic
interaction term to 36 will approximate the free energy of a superfluid because it allows
the BEC to "flow".
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Coherent States in Superfluids
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