Coherent States of the Quantum Harmonic Oscillator	General Coherent States	Applications	References

Coherent States in Quantum Mechanics

Gavin Rockwood

June 14, 2019

Overview

1 Coherent States of the Quantum Harmonic Oscillator

- Introduction
- Minimal Uncertainty States
- The Displacement Operator

2 General Coherent States

- Definition
- Heisenberg-Weyl Group
- Coherent Spin States

3 Applications

- Coherent States in Optics
- Coherent States in Superfluids

Coherent States of the Quantum Harmonic Oscillator	General Coherent States	Applications	References
00000000			

Coherent States of the Quantum Harmonic Oscillator

Coherent States of the Quantum Harmonic Oscillator	General Coherent States	Applications	References
Introduction			

The Quantum Harmonic Oscillator

For our discussion, we will deal with the harmonic oscillator in 1 dimension!

The Hamiltonian

$$\hat{H} = -\hbar^2 \frac{\hat{P}^2}{2m} + \frac{1}{2} m \omega \hat{X}^2$$
(1)

$$\hat{a} := \frac{1}{\sqrt{2\hbar m\omega}} \left(m\omega \hat{Q} + i\hat{P} \right)$$
⁽²⁾

$$\hat{\mathbf{a}}^{\dagger} := \frac{1}{\sqrt{2\hbar m\omega}} \left(m\omega \hat{\mathbf{Q}} - i\hat{\mathbf{P}} \right)$$
$$\implies \hat{H} = \hbar\omega \left(\hat{\mathbf{a}}^{\dagger} \hat{\mathbf{a}} + \frac{1}{2} \right)$$
(3)

For the QHO, lets calculate $\Delta X \Delta P$.

Show $\Delta X \Delta P =$

Starting with:

$$\hat{X} = \sqrt{\frac{\hbar}{2m\omega}} \left(\hat{a} + \hat{a}^{\dagger} \right)$$

$$\hat{P} = -i\sqrt{\frac{\hbar m\omega}{2}} \left(\hat{a} - \hat{a}^{\dagger} \right)$$
(4)

With this we have:

$$\Delta x \Delta p = \sqrt{\langle n | \hat{X}^2 | n \rangle - \langle n | \hat{X} | n \rangle^2} \sqrt{\langle n | \hat{P}^2 | n \rangle - \langle n | \hat{P} | n \rangle^2}$$
(5)
= $\frac{\hbar}{2} (2n+1)$ (6)

We see that n = 0 saturates the Heisenberg Uncertainty relation: $\Delta x \Delta p \geq \frac{\hbar}{2}$.

Another Minimal Uncertainty State

Lets define the following state:

$$z\rangle = e^{-\frac{1}{2}|z|^2} \sum_{n=0}^{\infty} \frac{z^n}{\sqrt{n!}} |n\rangle; \quad z \in \mathbb{C}$$
(7)

This state is exciting because $\hat{a} |z\rangle = z |z\rangle$. Also $\langle z|z\rangle = 1$. Its good to note that $|z\rangle$ can also be written as:

$$|z\rangle = e^{-\frac{1}{2}|z|^2 + z\hat{a}} |0\rangle \tag{8}$$

Note!

It is worth noting that there is a yet unmentioned way to write $|z\rangle$ that will be discussed shortly

Another Minimal Uncertainty State Continued

As mentioned, $|z\rangle$ is a minimal uncertainty state. To see this:

Proof that $|z\rangle$ is a minimal uncertainty state.

Starting with:

$$\langle z | \hat{X} | z \rangle = \sqrt{\frac{\hbar}{2m\omega}} \left(\langle z | \hat{a} | z \rangle + \langle z | \hat{a}^{\dagger} | z \rangle \right) = \sqrt{\frac{\hbar m\omega}{2}} (z + z^{*})$$

$$\langle z | \hat{P} | z \rangle = -i\sqrt{\frac{\hbar m\omega}{2}} (z - z^{*})$$

$$\langle z | \hat{X}^{2} | z \rangle = \sqrt{\frac{\hbar}{2m\omega}} \left((z + z^{*})^{2} + 1 \right)$$

$$\langle 2 | \hat{P}^{2} | z \rangle = sqrt \frac{\hbar m\omega}{2} \left((z - z^{*})^{2} - 1 \right)$$

$$(9)$$

With this:

$$\Delta x \Delta p = \frac{\hbar}{2} \tag{10}$$

Coherent States of the Quantum Harmonic Oscillator	General Coherent States	Applications	References
00000000			
The Displacement Operator			
The Translation Operator			

Let us define the following operator, called the Heisenberg-Weyl Translation operator.

$$\hat{T}(z) = e^{\frac{i}{\hbar} \left(p\hat{Q} - q\hat{P} \right)}, \quad \frac{1}{\sqrt{2\hbar m\omega}} \left(m\omega q + ip \right) \in \mathbb{C}$$
(11)

This operator can also be written in terms of creation and annihilation operators:

$$\hat{T}(z) = e^{z\hat{a}^{\dagger} - z^*\hat{a}}$$
(12)

This last version is the one most commonly seen in discussions about coherent states.

We will go back and explore the Heisenberg-Weyl group in greater depth when we talk about general coherent states

The Displacement Operator

The Action of $\hat{T}(z)$ on \hat{Q} and \hat{P}

We are after $\hat{T}(z)\hat{Q}\hat{T}^{-1}(z)$ and $\hat{T}(z)\hat{P}\hat{T}^{-1}(z)$.

Start with $\hat{T}(z)\hat{a}\hat{T}^{-1}(z)$.

$$\hat{T}(z)\hat{a}\hat{T}^{-1}(z) = \hat{a} - \left[\hat{a}, z\hat{a}^{\dagger} - z^{*}\hat{a}
ight]$$

= $\hat{a} - z$

By expanding \hat{a}, z in terms of \hat{Q}, \hat{P}, q, p we get:

$$\hat{T}(z)\hat{Q}\hat{T}^{-1}(z) = \hat{Q} - q$$

$$\hat{T}(z)\hat{P}\hat{T}^{-1}(z) = \hat{P} - p$$
(13)

Coherent States of the Quantum Harmonic Oscillator	General Coherent States	Applications	References
The Displacement Operator			
$ z angle$ from $\hat{D}(z)$			

Earlier I mentioned that there was another way to write $|z\rangle$ and that is as:

$$|z\rangle = \hat{D}(z) |0
angle$$
 (14)

Some Quick Observations

If we let ϕ_z be the position wavefunction of $|z\rangle$ then:

• $\hat{T}(0) |0\rangle = |0\rangle \implies \hat{T}(0)\phi_0 = \phi_0$ where ϕ_0 is the groundstate wavefunction of the harmonic oscillator. In other words, the groundstate is a coherent state.

$$\hat{T}(z)\phi_0(x) = e^{-\frac{i}{2\hbar}qp}e^{\frac{i}{\hbar}xp}\phi_0(x-q)$$

$$\hat{T}(z)\mathcal{F}[\phi_0](k) = e^{-\frac{i}{2\hbar}qp}e^{\frac{i}{\hbar}qk}\mathcal{F}[\phi_0](k-p)$$
(15)

Where $\mathcal{F}[\phi_0](k)$ is the Fourier transform of ϕ_0 . Here, we see that $|z\rangle$ is now localized at $\hat{Q} = q$ and $\hat{P} = p$ in phase space.

Coherent States of the Quantum Harmonic Oscillator	General Coherent States	Applications	References
The Displacement Operator			
Time Evolution!			

The time evolution of $\hat{T}(z)$ is given by:

$$\hat{T}(z_t) = e^{-iH_{\rm HO}t/\hbar} \hat{T}(z_0) e^{iH_{\rm HO}t/\hbar}$$
(16)

With this, the time evolution of a coherent state is given by:

$$e^{-iH_{\rm HO}t/\hbar} |z_0\rangle = |z(t)\rangle, \quad z(t) = e^{i\omega t} z_0 \tag{17}$$

Time Evolution of $\langle Q \rangle$ and $\langle P \rangle$

$$\langle z(t) | \hat{Q} | z(t) \rangle = p_0 \sin(\omega t) - q_0 \cos(\omega t)$$

$$\langle z(t) | \hat{P} | z(t) \rangle = -q_0 \sin(\omega t) - p_0 \cos(\omega t)$$
(18)

General Coherent States

Gavin Rockwood

Definition

Definition of General Coherent State

Let *G* be an arbitrary Lie group and *T* be an irreducible representation acting on a Hilbert space \mathcal{H} . Pick a vector $|\psi_0\rangle \in \mathcal{H}$, then the coherent state system $\{T, |\psi_0\rangle\}$ is the set $\{|\psi\rangle \in \mathcal{H} \text{ s.t. } |\psi\rangle = T(g) |\psi_0\rangle, g \in G\}$.

Now, we will want to look at a subgroup $H = \{g \in G \text{ s.t. } T(g) |\psi_0\rangle = e^{i\alpha(g)} |\psi_0\rangle\}$. *H* is the isotropy group of $|\psi_0\rangle$.

Definition

Then a general coherent state $|\psi_g\rangle = g |\psi_0\rangle$ is determined by a point x = x(g) in the coset space G/H such that $|\psi_g\rangle = e^{i\alpha(x)} |x\rangle$.

Heisenberg-Weyl Group

Looking at the Heisenberg - Weyl Group

They algebra of the Heisenberg-Weyl group in *n* dimensions (denoted as W_n is generated by I, Q_1 , ... Q_n and P_1 , ... P_n .

$$\begin{bmatrix} Q_i, Q_j \end{bmatrix} = \begin{bmatrix} P_i, P_j \end{bmatrix} = \begin{bmatrix} I, Q_i \end{bmatrix} = \begin{bmatrix} I, P_i \end{bmatrix} = 0$$
$$\begin{bmatrix} Q_i, P_j \end{bmatrix} = \delta_{ij} \hbar I$$
(19)

The Lie Algebra \mathfrak{h}_n is generated by $I \to \hat{I}$, $Q \to \hat{Q}$ and $P \to \hat{P}$. Thus, any element of \mathfrak{h}_n can be written as:

$$\hat{W} = \frac{it}{2\hbar} I + \frac{i}{\hbar} \left(p \cdot \hat{Q} - q \cdot \hat{P} \right) = \frac{it}{2\hbar} + \frac{i}{\hbar} \hat{L}(z), \quad \hat{L}(z) := \left(p \cdot \hat{Q} - q \cdot \hat{P} \right), z = (q, p) \in \mathbb{R}^{2n}$$
(20)
So, $e^{\hat{W}} = e^{\frac{it}{2\hbar}} e^{\frac{i}{\hbar} \hat{L}(z)} = e^{\frac{it}{2\hbar}} \hat{T}(z)$

Coherent States of the Quantum Harmonic Oscillator	General Coherent States	Applications	References
Heisenberg-Weyl Group			
Some Properties of \hat{T}			

The product of $\hat{T}(z)$ and $\hat{T}(z')$.

$$\hat{T}(z)\hat{T}(z') = e^{-\frac{i}{2\hbar}(q\cdot p' - p\cdot q')}\hat{T}(z+z') \in W_n$$
(21)

The identity operator is $e^{\hat{W}(t=0,z=0)}$ and for a given state $|\psi\rangle$, the isotropy group is given by $H_n = \left\{ e^{\hat{W}(t,0)} \right\} \cong U(1)$.

The set of coherent operators is $W_n/H_n = \left\{ \hat{T}(z), z = (q, p) \in \mathbb{R}^{2n} \right\}$

Heisenberg-Weyl Group

So Back to the Harmonic Oscillator

If we go back to the harmonic oscillator, we had a ground state $|0\rangle$, The group we are considering is W_1 , the isotropy group is still $\left\{e^{\hat{W}(t=0,z=0)}\right\} \cong U(1)$. Thus coherent states of the Heisenberg-Weyl group are generated by $T(z), z = (q, p) \in \mathbb{R}^2$.

Heisenberg-Weyl Group

A Few More Notes on the Harmonic Oscillator

The set $\{\hat{T}(z) | 0\rangle\}$ is complete but not necessarily orthogonal:

$$\left\langle z'|z\right\rangle = \left\langle 0\right|\hat{\mathcal{T}}^{-1}(z')\hat{\mathcal{T}}(z)\left|0\right\rangle \tag{22}$$

$$= \langle 0 | T(-z')T(z) | 0 \rangle$$
(23)

$$=e^{\frac{i}{2\hbar}(q'p-p'q)}\langle 0|\hat{T}(z'+z)|0\rangle$$
(24)

$$= \exp\left[\frac{i}{2\hbar} \left(q'\rho - p'q\right) - \frac{(q'-q)^2 + (p'-p)^2}{4\hbar}\right]$$
(25)

This last part comes from the fact $\langle 0 | \hat{T}(z) | 0 \rangle = \exp\left(-\frac{q^2 + p^2}{4\hbar}\right)$. This implies $\left\{ \hat{T}(z) | 0 \rangle \right\}$ is in fact overcomplete.

Coherent States of the Quantum Harmonic Oscillator	General Coherent States	Applications	Referen
Coherent Spin States			

Let $|j, m\rangle$ be a state of spin *j* and *z* projection *m*. Then $J_3 |j, m\rangle = m |j, m\rangle$ and $J^2 |j, m\rangle = j(j+1) |j, m\rangle$. The uncertainty relation $\Delta J_1 \Delta J_2 \ge \frac{1}{2} \langle J_3 \rangle$.

$$\Delta J_1 \Delta J_2 = \frac{1}{2} \left(j(j+1) - m^2 \right)$$
(27)

States of minimal uncertainty are given by $m = \pm j$.

Sooo, whats G and H?

Our Lie group for this system is G = SU(2). With this, we can go back to our definition of a general coherent state. The isotropy group is U(1) and thus the phase space is SU(2)/U(1) which is topologically equivalent to S^2 .

Now! Lets construct them!

Coherent Spin States

Constructing Spin Coherent States Defining Some Ladder Operators

Lets start by defining:

Ladder Operators!

$$\hat{J}_{\pm} = \hat{J}_1 \pm i\hat{J}_2 \tag{28}$$

where

$$\hat{J}_{\pm} | j, m \rangle = \sqrt{(j \mp m)(j \pm m + 1)} | j, m \pm 1 \rangle$$
⁽²⁹⁾

and

$$\begin{bmatrix} \hat{J}_3, \hat{J}_{\pm} \end{bmatrix} = \pm \hat{J}_{\pm}$$

$$\begin{bmatrix} \hat{J}_+, \hat{J}_- \end{bmatrix} = 2\hat{J}_3$$
(30)

Coherent Spin States

Ok, Now Start to Construct Spin Coherent States

We begin by defining an operator:

$$\hat{D}(\xi) = e^{\xi \hat{J}_{+} - \xi^{*} \hat{J}_{-}}, \quad \xi = -\tan\left(\frac{\theta}{2}\right) e^{-i\phi}$$
(31)

Then, in a similar fashion as earlier, a coherent state is defined as:

$$|\xi\rangle = \hat{D}(\xi) |j, -j\rangle = \sum_{m=-j}^{j} \left[\frac{(2j)!}{(j+m)(j-m)} \right]^{\frac{1}{2}} (1+|\xi|^2)^{-j} \xi^{j+\mu} |j, m\rangle$$
(32)

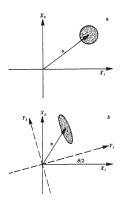
00000000	000000000	00000	
Coherent States of the Quantum Harmonic Oscillator	General Coherent States	Applications	References

Applications

Coherent States of the Quantum Harmonic Oscillator	General Coherent States	Applications	References
Coherent States in Optics			
The Squeeze Operator			

The squeeze operator is defined as:

$$S(\zeta) := e^{\frac{1}{2}\left(\zeta^* a^2 - \zeta a^{\dagger 2}\right)}, \quad \zeta = r e^{i\theta}$$
(33)



Coherent States of the Quantum Harmonic Oscillator 000000000 Coherent States in Optics	General Coherent States	Applications ○O●○○	References
Why are These Useful?			

- Optical Communication: Helps improve signal to noise ratio
- Interferometry: LIGO!
- Some weird quantum information stuff

Coherent States of the Quantum Harmonic Oscillator	General Coherent States	Applications	References
Coherent States in Superfluids			
Coherent States of Fields			

Superfluids are discussed in terms of bosonic fields. So with that in mind, lets define:

$$|z_k\rangle = e^{-\frac{1}{2}|z|^2} \sum_{n_k}^{\infty} \frac{z_k^n}{\sqrt{n_k!}} |n_k\rangle$$
(34)

Where n_k is the number of states in the k^{th} mode of the field. We have the completeness relation:

$$\frac{1}{\pi} \int dz_k \left| z_k \right\rangle \left\langle z_k \right| = 1 \tag{35}$$

The set of all states of the form $\prod_k |z_k\rangle$ form a complete set of states.

Coherent States of the Quantum Harmonic Oscillator	General Coherent States	Applications	References
Coherent States in Superfluids			
Free Energy of $ \{z\}\rangle$			

The free energy of $|\{z\}\rangle$ is given by:

$$F\{z\} = -k_b \ln\left[\langle \{z\} | \exp\left(-\frac{\hat{H}^{(0)} - \mu \hat{N}}{k_b T}\right) | \{z\} \rangle\right]$$
(36)

Which to first order goes like:

$$F^{\{0\}}\{z\} = -k_b \sum_{k} \left(e^{-\frac{\frac{1}{2}\hbar\omega - \mu}{k_b T}} |z_k|^2 \right)$$
(37)

This is a good approximation for a Bose-Einstein condensate. Adding a quadratic interaction term to 36 will approximate the free energy of a superfluid because it allows the BEC to "flow".

Coherent States of the Quantum Harmonic Oscillator	General Coherent States	Applications	References
Coherent States in Superfluids			

- [1] J. Aasi, J. Abadie, B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, and et al. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light. *Nature Photonics*, 7:613–619, August 2013.
- [2] Monique Combescure and Didier Robert. *Coherent States and Applications in Mathematical Physics*, volume 2012. 02 2012.
- [3] K. Fujii. Introduction to Coherent States and Quantum Information Theory. *eprint arXiv:quant-ph/0112090*, December 2001.
- [4] J. S. Langer. Coherent states in the theory of superfluidity. *Phys. Rev.*, 167:183–190, Mar 1968.
- [5] A. I. Lvovsky. Squeezed light. arXiv e-prints, January 2014.
- [6] A. Perelomov. Generalized coherent states and their applications.
- [7] Henning Vahlbruch, Moritz Mehmet, Karsten Danzmann, and Roman Schnabel. Detection of 15 db squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. *Phys. Rev. Lett.*, 117:110801, Sep 2016.
- [8] D. F. Walls. Squeezed states of light. Nature, 306:141-146, 1983.