
Physics 251 Properties of the Gell-Mann matrices Spring 2019

The Lie algebra su(n) consists of the set of traceless n×n anti-hermitian matrices.
Following the physicist’s convention, we shall multiply each matrix in this set by i

to obtain the set of traceless n × n hermitian matrices. Any such matrix can be
expressed as a linear combination of n2 − 1 matrix generators that form the basis of
the su(n) Lie algebra.

It is convenient to define the following n2 traceless n× n matrices,

(F k
ℓ )ij = δℓiδkj −

1

n
δkℓδij , (1)

where ij indicates the row and column of the corresponding matrix (here i and j can
take on the values 1,2,. . . , n), and k and ℓ label the n2 possible matrices F k

ℓ (where
k, ℓ = 1, 2, . . . , n). Note that

∑

ℓ

F ℓ
ℓ = 0 , (2)

which means that of the n2 matrices, F k
ℓ , only n2 − 1 are independent. These n2 − 1

generators will be employed to construct the basis for the su(n) Lie algebra. The
corresponding commutation relations are easily obtained,

[

F k
ℓ , Fm

n

]

= δknF
m
ℓ − δmℓ F k

n . (3)

The matrices F k
ℓ satisfy

(F k
ℓ )

† = F ℓ
k . (4)

Thus, we can use the F k
ℓ to construct n2 − 1 traceless n × n hermitian matrices by

employing suitable linear combinations.
In these notes, we are interested in the su(3) Lie algebra. Setting n = 3 in the

equations above, we define the eight Gell-Mann matrices, which are related to the F k
ℓ

(ℓ, k = 1, 2, 3) defined in eq. (1) as follows:1

λ1 = F 2
1 + F 1

2 , λ2 = −i(F 2
1 − F 1

2 ) ,

λ4 = F 3
1 + F 1

3 , λ5 = −i(F 3
1 − F 1

3 ) ,

λ6 = F 3
2 + F 2

3 , λ7 = −i(F 3
2 − F 2

3 ) ,

λ3 = F 1
1 − F 2

2 , λ8 = −
√
3F 3

3 =
√
3(F 1

1 + F 2
2 ) , (5)

where we have used eq. (2) to rewrite λ8 in two different ways. In defining the Gell-
Mann matrices above, we have chosen to normalize the su(3) generators such that

Tr(λaλb) = 2δab . (6)

This explains the appearance of the
√
3 in the definition of λ8 in eq. (5).

1Using eq. (4), one can easily check that the Gell-Mann matrices are hermitian as advertised.
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The Gell-Mann matrices are the traceless hermitian generators of the su(3) Lie
algebra, analogous to the Pauli matrices of su(2). Using eq. (1) with n = 3 and
eq. (5), the eight Gell-Mann matrices are explicitly given by:

λ1 =





0 1 0
1 0 0
0 0 0



 , λ2 =





0 −i 0
i 0 0
0 0 0



 , λ3 =





1 0 0
0 −1 0
0 0 0



 ,

λ4 =





0 0 1
0 0 0
1 0 0



 , λ5 =





0 0 −i

0 0 0
i 0 0



 , λ6 =





0 0 0
0 0 1
0 1 0



 ,

λ7 =





0 0 0
0 0 −i

0 i 0



 , λ8 =
1√
3





1 0 0
0 1 0
0 0 −2



 .

The Gell-Mann matrices satisfy commutation relation,

[λa, λb] = 2ifabcλc , where a, b, c = 1, 2, 3, . . . , 8 ,

where there is an implicit sum over c, and the structure constants fabc are totally
antisymmetric under the interchange of any pair of indices. The explicit form of the
non-zero su(3) structure constants are listed in Table 1.

Table 1: Non-zero structure constants1 fabc of su(3).

abc fabc abc fabc

123 1 345 1
2

147 1
2

367 −1
2

156 −1
2

458 1
2

√
3

246 1
2

678 1
2

√
3

257 1
2

1
The fabc are antisymmetric under the permutation of any pair of indices.

The following properties of the Gell-Mann matrices are also useful:

Tr(λaλb) = 2δab , {λa, λb} = 2dabcλc +
4
3
δabI ,

where I is the 3 × 3 identity matrix and {A,B} ≡ AB + BA is the anticommutator
of A and B. It follows that

fabc = −1
4
iTr
(

λa[λb, λc]
)

, dabc =
1
4
Tr
(

λa{λb, λc}
)

.
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The dabc are totally symmetric under the interchange of any pair of indices. The
explicit form of the non-zero dabc are listed in Table 2.

Table 2: Non-zero independent elements of the tensor2 dabc of su(3).

abc dabc abc dabc

118 1√
3

355 1
2

146 1
2

366 −1
2

157 1
2

377 −1
2

228 1√
3

448 − 1

2
√
3

247 −1
2

558 − 1

2
√
3

256 1
2

668 − 1

2
√
3

338 1√
3

778 − 1

2
√
3

344 1
2

888 − 1√
3

2
The dabc are symmetric under the permutation of any pair of indices.

Using the explicit form for the structure constants fabc, one can construct the
Cartan-Killing metric tensor,2

gab = facdfbcd = 3δab ,

and the inverse metric tensor is gab = 1
3
δab. The latter can be used to construct the

quadratic Casimir operator in the defining representation of su(3),

C2 =
3
4
gabλaλb =

1
4

∑

a

(λa)
2 = 4

3
I ,

where I is the 3× 3 identity matrix and the overall factor of 3
4
is conventional.

One can define C2 for any d-dimensional irreducible representation R of su(3). We
shall denote the the corresponding traceless hermitian generators in representation R

by Ra. The normalization of the matrix generators in the defining representation of
su(3) will be fixed by Tr(RaRb) =

1
2
δab. Thus, in the defining representation of su(3),

we identify Ra = 1
2
λa [cf. eq. (6)]. In the adjoint representation of su(3), we may

identify (Ra)bc = −ifabc.

2Since we are employing the physicisit’s convention in which the su(3) generators are hermitian,
the Cartan-Killing metric tensor is positive definite. This is in contrast with the mathematician’s
convention of anti-hermitian generators, where the corresponding Cartan-Killing metric tensor of
su(3) is negative definite.
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For any irreducible representation R of su(3), the Casimir operator is defined by

C2(R) = 3gabRaRb =
∑

a

(Ra)
2 = c2RId . (7)

where Id is the d × d identity matrix. Indeed, by using [Ra, Rb] = ifabcRc, it is
straightforward to prove that,

[Ra, C2] = 0 , for a = 1, 2, 3, . . . , 8 .

Since C2 commutes with all the su(3) generators of the irreducible representation R,
it follows from Schur’s lemma that C2 is a multiple of the identity, as indicated in
eq. (7). As an example, in the adjoint representation A where (Ra)bc = −ifabc, it
follows that

C2(A)cd = fabcfabd = gcd = 3δcd ,

which yields c2A = 3.
For an irreducible representation of su(3) denoted by (n,m), corresponding to a

Young diagram with n+m boxes in the first row and n boxes in the second row,3 the
eigenvalue of the quadratic Casimir operator is given by,

c2 =
1
3
(m2 + n2 +mn) +m+ n .

The dabc can be employed to construct a cubic Casimir operator in the defining
representation of su(3),

C3 ≡ 1
8
dabcλaλbλc =

10
9
I ,

where all repeated indices are summed over. The overall factor of 1
8
is conventional.

For any d-dimensional irreducible representation R of su(3), the cubic Casimir
operator is defined by

C3(R) ≡ dabcRaRbRc = c3RId . (8)

As before, it is straightforward to prove that,

[Ra, C3] = 0 , for a = 1, 2, 3, . . . , 8 .

Since C3 commutes with all the su(3) generators of the irreducible representation R,
it follows from Schur’s lemma that C3 is a multiple of the identity, as indicated in
eq. (8).

For an irreducible representation of su(3) denoted by (n,m), corresponding to a
Young diagram with n+m boxes in the first row and n boxes in the second row, the
eigenvalue of the cubic Casimir operator is given by:

c3 =
1
2
(m− n)

[

2
9
(m+ n)2 + 1

9
mn +m+ n + 1

]

.

In particular, the eigenvalue of cubic Casimir operator in the adjoint representation
vanishes.

3In particular, (1, 0) is the defining representation and (1, 1) is the adjoint representation of su(3).

4



It is convenient to rewrite the commutation relations of the generators of the su(3)
Lie algebra in the Cartan-Weyl form. Defining Ta ≡ 1

2
λa, and using the F k

ℓ of eq. (1)
[with n = 3], it follows from eq. (3) that,

[

T3 , F
2
1

]

= F 2
1 ,

[

T3 , F
1
2

]

= −F 1
2 ,

[

T8 , F
2
1

]

= 0 ,
[

T8 , F
1
2

]

= 0 ,
[

T3 , F
3
1

]

= 1
2
F 3
1 ,

[

T3 , F
1
3

]

= −1
2
F 1
3 ,

[

T8 , F
3
1

]

= 1
2

√
3F 3

1 ,
[

T8 , F
1
3

]

= −1
2

√
3F 1

3 ,
[

T3 , F
3
2

]

= −1
2
F 3
2 ,

[

T3 , F
2
3

]

= 1
2
F 2
3 ,

[

T8 , F
3
2

]

= 1
2

√
3F 3

2 ,
[

T8 , F
2
3

]

= −1
2

√
3F 2

3 .

These commutation relations can be rewritten in the following notation,

[Ti , Fα

]

= αiFα ,

where i = 3, 8 and Fα = {F 2
1 , F

1
2 , F

3
1 , F

1
3 , F

3
2 , F

2
3 }. Using the explicit form of the

commutation relations given above, we can read off the six root vectors corresponding
to the six generators Fα,

(1 , 0) , (−1 , 0) ,

(

1

2
,

√
3

2

)

,

(

−1

2
, −

√
3

2

)

,

(

−1

2
,

√
3

2

)

,

(

1

2
, −

√
3

2

)

.

Thus, the root diagram of the complexified su(3) Lie algebra [that is, sl(3,C)] is

(1
2
,−

√

3

2
)(− 1

2
,−

√

3

2
)

(− 1

2
,

√

3

2
) (1

2
,

√

3

2
)

(1, 0)(−1, 0)

Figure 1: The root diagram for sl(3,C).
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