Physics 251 Properties of the Gell-Mann matrices Spring 2019

The Lie algebra su(n) consists of the set of traceless n x n anti-hermitian matrices.
Following the physicist’s convention, we shall multiply each matrix in this set by
to obtain the set of traceless n x n hermitian matrices. Any such matrix can be
expressed as a linear combination of n? — 1 matrix generators that form the basis of
the su(n) Lie algebra.

It is convenient to define the following n? traceless n x n matrices,

1
(Ef)ij = 60i6rj — Eékﬁéij , (1)

where ij indicates the row and column of the corresponding matrix (here i and j can
take on the values 1,2,...,n), and k and ¢ label the n? possible matrices F} (where

k.0 =1,2,...,n). Note that
> F =0, (2)
¢

which means that of the n? matrices, FJ¥, only n? — 1 are independent. These n? — 1
generators will be employed to construct the basis for the su(n) Lie algebra. The
corresponding commutation relations are easily obtained,

[Ff, E"] =65 F" — 6" FF. (3)

n

The matrices F} satisfy
(F)' = Fy. (4)
Thus, we can use the F} to construct n? — 1 traceless n x n hermitian matrices by
employing suitable linear combinations.
In these notes, we are interested in the su(3) Lie algebra. Setting n = 3 in the

equations above, we define the eight Gell-Mann matrices, which are related to the F}
(¢,k =1,2,3) defined in eq. (1) as follows:!

M=F 4+ Fy, Ay = —i(F} — Fy),
M= F+ Fy, X = —i(F} — Fy),
Ae = Fy + Fj, A= —i(Fy — F3),
Ag = F! — F2, \s = —V3EF] = V3(F} + F2), (5)

where we have used eq. (2) to rewrite A\g in two different ways. In defining the Gell-
Mann matrices above, we have chosen to normalize the su(3) generators such that

Tl"()\a>\b) = 25[117 . (6)

This explains the appearance of the v/3 in the definition of \g in eq. (5).

1Using eq. (4), one can easily check that the Gell-Mann matrices are hermitian as advertised.
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The Gell-Mann matrices are the traceless hermitian generators of the su(3) Lie
algebra, analogous to the Pauli matrices of su(2). Using eq. (1) with n = 3 and
eq. (5), the eight Gell-Mann matrices are explicitly given by:

0 1 0 0 — 0 1 0 0
=11 0 0], =1t 0 0], =10 -1 0],
0 0 O 0 0 O 0 0 0
0 0 1 0 0 — 0 0 0
AM=10 0 0], =10 0 , =10 0 1],
1 0 0 0 0 0 1 0
0 0 0 1 1 0 0
)\7: 0 0 —2 s )\8:— 0 1 0
0 <+ 0 V3 0 0 -2

The Gell-Mann matrices satisfy commutation relation,
Aas o) = 20 fapee where a,b,c =1,2,3,...,8,

where there is an implicit sum over ¢, and the structure constants fu. are totally
antisymmetric under the interchange of any pair of indices. The explicit form of the
non-zero su(3) structure constants are listed in Table 1.

Table 1: Non-zero structure constants® fup. of su(3).

abe fabc abe fabc
123 1 345 :
147 : 367 -1
156 1 458 5V3
246 ! 678 5V3
257 5

1The fabe are antisymmetric under the permutation of any pair of indices.

The following properties of the Gell-Mann matrices are also useful:
Tr()\a)\b) == 25(11)7 {)‘aa )\b} = 2dabc)\c + géab17

where I is the 3 x 3 identity matrix and {A, B} = AB + BA is the anticommutator
of A and B. It follows that

fabc = _il Tl"()\a[)\ba )\C]) ) dape = iTr()\a{)‘lM )\c}) .



The dg. are totally symmetric under the interchange of any pair of indices. The
explicit form of the non-zero d,. are listed in Table 2.

Table 2: Non-zero independent elements of the tensor? dg. of su(3).

abc dube abc dube
118 e 355 3
146 : 366 —3
157 ! 377 -1
228 NG 448 ~5v3
247 -1 558 ~5v3
256 : 668 ~5v3
338 7 778 ~55
344 : 888 7

2The dgpe are symmetric under the permutation of any pair of indices.

Using the explicit form for the structure constants f,., one can construct the
Cartan-Killing metric tensor,?

Gab = facdfbcd = 35(11)9

and the inverse metric tensor is g% = %5‘”’. The latter can be used to construct the

quadratic Casimir operator in the defining representation of su(3),

(SN

Cy = %gab)\a)\b = iZ()\a)2 = I>

where I is the 3 x 3 identity matrix and the overall factor of % is conventional.

One can define C for any d-dimensional irreducible representation R of su(3). We
shall denote the the corresponding traceless hermitian generators in representation R
by R,. The normalization of the matrix generators in the defining representation of
su(3) will be fixed by Tr(R,Ry) = 18, Thus, in the defining representation of su(3),
we identify R, = %)\a [cf. eq. (6)]. In the adjoint representation of su(3), we may

ldentlfy (Ra)bc = _Z.fabc-

2Since we are employing the physicisit’s convention in which the su(3) generators are hermitian,
the Cartan-Killing metric tensor is positive definite. This is in contrast with the mathematician’s
convention of anti-hermitian generators, where the corresponding Cartan-Killing metric tensor of
5u(3) is negative definite.



For any irreducible representation R of su(3), the Casimir operator is defined by

Cy(R) = 3¢"R.Ry = Y (Ra)* = capla. (7)

a

where I is the d x d identity matrix. Indeed, by using [R., Ry] = ifucRe, it is
straightforward to prove that,

[R,,Cs] =0, fora=1,2,3,...,8.

Since Cy commutes with all the su(3) generators of the irreducible representation R,
it follows from Schur’s lemma that C5 is a multiple of the identity, as indicated in
eq. (7). As an example, in the adjoint representation A where (Ry)pe = —ifape, it
follows that

C2(A)cd = fabcfabd = Gecd = 360(17

which yields co4 = 3.

For an irreducible representation of su(3) denoted by (n,m), corresponding to a
Young diagram with n +m boxes in the first row and n boxes in the second row,® the
eigenvalue of the quadratic Casimir operator is given by,

e =2(m”+n°+mn)+m+n.

The dg. can be employed to construct a cubic Casimir operator in the defining
representation of su(3),
C3 = édabc)\a)\b)\c = %Ia
where all repeated indices are summed over. The overall factor of % is conventional.
For any d-dimensional irreducible representation R of su(3), the cubic Casimir
operator is defined by
Cg(R) = dabcRaRbRc = CgRId . (8)

As before, it is straightforward to prove that,
[R,,C5] =0, fora=1,2,3,...,8.

Since C3 commutes with all the su(3) generators of the irreducible representation R,
it follows from Schur’s lemma that C'3 is a multiple of the identity, as indicated in
eq. (8).

For an irreducible representation of su(3) denoted by (n,m), corresponding to a
Young diagram with n + m boxes in the first row and n boxes in the second row, the
eigenvalue of the cubic Casimir operator is given by:

cs=3%(m—n)[2(m+n)’+imn+m+n+1].

In particular, the eigenvalue of cubic Casimir operator in the adjoint representation
vanishes.

3In particular, (1,0) is the defining representation and (1, 1) is the adjoint representation of su(3).
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It is convenient to rewrite the commutation relations of the generators of the su(3)
Lie algebra in the Cartan-Weyl form. Defining T, = %Aa, and using the F} of eq. (1)
[with n = 3], it follows from eq. (3) that,

[Ty, F}] = F7, Ty, Fy] = —F,,
[Ty, F?] =0, [Ty, Fy] =0,

T3, FY] = 3FY, T, F5] = —3F3,
[Ty, F] = 3V3F?, [Ty, F3] = —3V3Fy,
Ts, FJ] = =4 F;, [Ts, F}] = §F3,
[T, F3] = 3V3F5, [T, Fi] = —3V3 F;

These commutation relations can be rewritten in the following notation,
[7—;27 Fa} :OéiFaa

where i = 3,8 and F,, = {F}?, Fy, F}, Fy, Fy, F?}. Using the explicit form of the
commutation relations given above, we can read off the six root vectors corresponding
to the six generators Fy,

o (19), (39) (19). (19).

Thus, the root diagram of the complexified su(3) Lie algebra [that is, s[(3,C)] is

(-3.%) (3, %)
(—1,0) (1,0)
(=3.-%) (3%

Figure 1: The root diagram for sl(3, C).



