
Physics 251 Problem Set 3 Spring 2019

DUE: THURSDAY, May 23, 2019

1. (a) A homomorphism from the vector space R3 to the set of traceless Hermitian 2 × 2
matrices is defined by ~x → ~x · ~σ, where ~σ = (σ1 , σ2 , σ3) are the Pauli matrices. First,
show that det(~x · ~σ) = −|~x|2. Second, prove the identity:

xi =
1

2
Tr (~x · ~σ σi) .

This identity provides the inverse transformation from the set of traceless 2 × 2 Hermitian
matrices to the vector space R3.

(b) Let U ∈ SU(2). Show that U ~x · ~σU−1 = ~y · ~σ for some vector ~y. Using the results of
part (a), prove that an element of the rotation group exists such that ~y = R~x and determine
an explicit form for R ∈ SO(3). Display a homomorphism from SU(2) onto SO(3) and prove
that SO(3)∼= SU(2)/Z2.

(c) The Lie group SU(1 , 1) is defined as the group of 2 × 2 matrices V that satisfy
V σ3V

† = σ3 and det V = 1. (Note that V is not a unitary matrix.) The Lie group
SO(2 , 1) is the group of transformations on vectors ~x ∈ R3 (with determinant equal to one)
that preserves x2

1 + x2
2 − x2

3. Display the homomorphism from SU(1 , 1) onto SO(2 , 1) and
compare with part (b).

2. The Möbius group is defined as the set of linear fractional transformations:

M =

{

m(z) =
az + b

cz + d
, ad− bc = 1

}

,

where a, b, c, d and z are complex numbers.

(a) Show that the mapping f : SL(2,C) → M defined by:

f :

(

a b
c d

)

7→ m(z)

is a group homomorphism. [HINT: the multiplication law onM is defined by the composition
of functions.]

(b) Prove that M is not simply connected and identify its universal covering group.

3. In class, we showed that the invariant measure on a Lie group manifold is given by

dµ(g) = |det c(~ξ)| dξ1dξ2 · · · dξn , (1)

where the the matrix elements cjk(~ξ) are the coefficients of the Lie algebra element A−1∂A/∂ξk
with respect to some basis, and A(~ξ) are elements of the corresponding Lie group that is



parameterized by the coordinates ~ξ. That is, given an n-dimensional Lie group G, the cor-
responding real Lie algebra g consists of real linear combinations of basis vectors Aj ∈ g.
Since A−1∂A/∂ξk ∈ g for any A ∈ G, one can therefore write,

A−1
∂A

∂ξk
=

n
∑

i=1

cjk(~ξ)Aj , (2)

which defines the coefficients cjk(~ξ) needed in the determination of the invariant measure.

(a) An element of SO(3) can be parameterized by ~ξ = (α, β, γ), where α, β and γ are the
three Euler angles defined in Appendix E of the class handout entitled Properties of Proper

and Improper Rotation Matrices. Using the Euler angle parameterization of the SO(3) group
manifold, compute the invariant integration measure dµ(g) for SO(3).

(b) The SO(3) group manifold can be also be described as a ball of radius π with antipodal

points identified. A point in the SO(3) group manifold is specified by a vector ~ξ with |~ξ| ≤ π.

Thus, the SO(3) manifold is parameterized by ~ξ = (ξ, θ, φ), where (θ, φ) are the spherical

angles (such that 0 ≤ θ ≤ π and 0 ≤ φ < 2π) and ξ is the magnitude of the vector ~ξ.
[NOTE: This is equivalent to the angle-and-axis parameterization where the rotation angle
is ξ and the rotation axis, ξ̂, is specified by a polar angle θ and an azimuthal angle φ.]

Show that the the matrix elements of c(~ξ) defined in eq. (2) are given by,

c(~ξ)nk =
1

2
ǫℓnjR

−1

ℓi

dRij

dξk
, (3)

and Rij ≡ Rij(~ξ) is the SO(3) matrix given in problem 7(b) of problem set 2.

(c) [EXTRA CREDIT] Using eqs. (1) and (3), evaluate the invariant integration measure
dµ(g) for the angle-and-axis parameterization of SO(3) and show that

dµ(~ξ) = 2(1− cos ξ) sin θ dθ dφ dξ .

HINT: First evaluate dµ(~ξ) in terms of Cartesian coordinates ξ1, ξ2 and ξ3. Convert to
spherical coordinate (ξ, θ, φ) at the very end of the calculation.

4. Consider a Lie group of transformations G acting on a manifold M . That is, for every
g ∈ G, we have gx = y for some x, y ∈ M .

(a) Let H be the set of all transformations in G that map a given point x ∈ M into itself.
Show that H is a subgroup. H has at least three names in the mathematical literature: the
little group, the isotropy group, or the stability group of the point x.

(b) Consider the submanifold of M defined by {gx | g ∈ G}, for fixed x ∈ M . This is
called the orbit through x with respect to G. Show that there is a one-to-one correspondence
between the points of the orbit and the set of left cosets of H . Explain why we may conclude
that {gx | g ∈ G} = G/H . Show that the coset space G/H is homogeneous.



(c) Prove that Sn−1 =SO(n)/SO(n− 1) by considering the action of the rotation group
on the point (1, 0, 0, . . . , 0) ∈ Rn.

(d) Prove that S2n−1 =U(n)/U(n− 1) by considering the action of the U(n) matrices on
the point (1, 0, 0, . . . , 0) ∈ Cn.

(e) Complex projective space CPn is defined as the space of complex lines in Cn+1 through
the origin. That is, CPn consists of the set of vectors in Cn+1 (omitting the zero vector) where
we identify (z0, z1, . . . , zn) ∼ λ(z0, z1, . . . , zn) , for any nonzero complex number λ. Without
loss of generality, we can restrict our considerations to the vectors ~v ∈ Cn+1 such that
~v · ~v ∗ = 1. Show that U(1)⊗U(n) is the little group of the point z = (1, 0, 0, . . . , 0) ∈ CP

n,
and that CP

n is the orbit through z with respect to U(n + 1). Conclude that CP
n =

U(n+ 1)/U(1)⊗U(n).

(f) Real projective space RPn can be defined analogously to CP
n of part (e) by replacing

the field of complex numbers with the field of real numbers. What coset space can be
identified with RP

n?

(g) In parts (c)–(f), check that dim(G/H) = dimG− dimH .

(h) [EXTRA CREDIT] CPn is a manifold of n complex (or 2n real) dimensions. CP
1 is

homeomorphic to which well-known two-dimensional real manifold?

5. Let A be an even-dimensional complex antisymmetric 2n×2n matrix, where n is a positive
integer. We define the pfaffian of A, denoted by pfA, by:

pf A =
1

2nn!

∑

p∈S2n

(−1)pAi1i2Ai3i4 · · ·Ai2n−1i2n , (4)

where the sum is taken over all permutations

p =

(

1 2 · · · 2n
i1 i2 · · · i2n

)

and (−1)p is the sign of the permutation p ∈ S2n. If A is an odd-dimensional complex
antisymmetric matrix, the corresponding pfaffian is defined to be zero.

(a) By explicit calculation, show that1

detA = (pf A)2 , (5)

for any 2× 2 and 4× 4 complex antisymmetric matrix A.

(b) Prove that the determinant of any odd-dimensional complex antisymmetric matrix
vanishes. As a result, the definition of the pfaffian in the odd-dimensional case is consistent
with the result of eq. (5).

1In fact, eq. (5) holds for all complex antisymmetric 2n× 2n matrices, where n is any positive number.
A general proof will be provided in a class handout.



(c) Given an arbitrary 2n × 2n complex matrix B and complex antisymmetric 2n × 2n
matrix A, use the definition of the pfaffian given in eq. (4) to prove the following identity:

pf (BABT ) = pf A detB .

(d) A complex 2n × 2n matrix S is called symplectic if STJS = J , where ST is the
transpose of S and

J ≡

(

O 1

−1 O

)

,

where 1 is the n × n identity matrix and O is the n× n zero matrix. Prove that the set of
2n× 2n complex symplectic matrices, denoted by Sp(n,C), is a matrix Lie group2 [i.e., it is
a topologically closed subgroup of GL(2n,C)].

(e) Prove that if S is a symplectic matrix, then detS = 1.

HINT: It is very easy to prove that det S = ±1 by taking the determinant of the equation
STJS = J . To prove that there are no symplectic matrices with detS = −1, use the result
of part (c).

(f) Using the results of parts (d) and (e), prove that the matrix Lie groups Sp(1,C) and
SL(2,C) are isomorphic.

6. The two-dimensional Poincaré group P(2) is the group consisting of two-dimensional
Lorentz transformations [i.e., transformations on 2-vectors

(

ct

x

)

that preserve x2 − c2t2] and
translations in time and space. P(2) can be represented by 3 × 3 matrices acting homoge-

neously on the column vector,
(

ct
x
1

)

, in analogy with the two-dimensional Euclidean group,

E(2), worked out in class.

(a) Find the infinitesimal generators (i.e., differential operators) of the corresponding Lie
algebra, p(2). Work out the commutation relations of p(2).

(b) Compute the Cartan-Killing form. Show that P(2) is noncompact and non-semisimple.

(c) Express the Lie algebra p(2) as a semidirect sum of two abelian subalgebras.

2Warning: many authors denote the group of 2n× 2n complex symplectic matrices by Sp(2n,C).


