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Dirac Monopoles

e A magnetic monopole has the vector potential as:
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e Then we have B=VXA=—_p
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e There are singularities at 6=0 and 6=rt correspond to
Dirac string. Moving in a circle around string, particle
wave function picks up a phase exp{-iqg}. The Dirac string
IS undetectable and so we require that the phase factor
must be equal to 1, which lead to the Dirac quantization

contition
qg = 2nn



General gauge theory formalism

* Consider the faithful representation of G, given by D(Q)
and a scalar field ¢ which transforms under the

representation
P b — D(g)

e g is a function of spacetime: g=g(x), under such
transformations: b — D(2)d"d + 0" D(2)p

* To keep it covariant, we introduce gauge fields W! and
associate with them a matrix in the Lie algebra of Gi:

WH =WI'T? € L(G)



If we specify the gauge transformation as
WH = Wi+ S(@g)g
Then the modified covariant derivative is given by
D¢ = 0"¢p + ieD(IWH)¢p — D(g)D*¢p
If we define the antisymmetric gauge field tensor as

G* = GM™T% = duW" — 0"W¥ + ie[WH, W"]

We will find that [D*, D¢ = ieD(G*)¢ and consequently

GHY — gG,uvg—l



e Since we assume the group G is compact, we can always
arrange that

Tr(T*T?) = k6

e Then we will find the field tensor is invariant under the
action of the gauge group

1 1 1
G'G,,, =—Ti(G"G,) - —Tr(gG"g~'¢G,¢~") = =Tr(G*G,,)
K K K



The structure of the Higgs vacuum

 Consider the Lagrangian density

L=~ GGy, + (D'$)'(D,4) ~ Vi

auv

* Where V() is invariant under the action of gauge group G
V(D(g)p) = V()

e At any given time we expect the Lagrangian to satisfy the
following equations everywhere in space apart from a
finite number of compact regions which we call
monopoles, this is the Higgs vacuum.

V) =0, D¢ =0



We use M, to denote the manifold of Higgs field ¢ which
minimize the potential function

My=1¢ : V(¢) = 0]

A non-trivial vacuum manifold consists of more than one
point, forms an orbit of G. Any two points which can be
related by an element of G are said to be on the same orbit.

¢, = D(g)p,

Here we assume that M, consists of a single orbit of the
gauge group G, that is to say, given

d, P, € My,3g,, € G, such that ¢, = D(g,,)¢,



Little group

* For representation D of gauge group G, the little group of a
point ¢ € M, is defined as

Hy,={h e G: D = ¢)

* Lemma: Representations belonging to the same orbit have
their little groups interrelated as

H=g'Hyg

 Thus for single orbit H is isomorphic for different ¢, if we
choose any point ¢, € M, we will have g — H, and the
manifold structure is only determined by G.



e |n fact,

e Prove: Associate a point ® with ¢ € G via ¢ =D(9)¢, , the
elements &1, & will be associated with the same ¢ if and
only if §1and 82 belong to the same right coset of H in G,

That is, D(g'g,)¢0 = #,, OF equivalently, g7'g, € H

* Thus we may identify M, with the right coset space G/H
which means once H has been determined the other
details associated with the Higgs field may be ignored.



Homotopy class

 Consider a compact monopole region M, surrounded by a
large region S, in which the equations defining the Higgs
vacuum hold to a good approximation.

e If r€S then @) €M,

e This implies that if we consider a closed surface 2.,
enclosing M once, then ¢ : £ - M,



e As time evolves, if the map varies continuously with time
we called such change a homotopy, and ¢, 1), ¢(r,1,) are
said to define homotopic maps.

e Generally, two continuous maps f_1 and f_2 between

topological spaces X and Y are homotopic, if there exists
F sending .7 — F(x,n € Y (t €[0,1] and x € X) , such that

F(x,0) = f,(x) and F(x,1) = f,(x)

e Thus F maps X X [0,1] = Y and constitutes a continuous
deformation of the map f_1 into the map f_2, we denote
such classes of maps from n-sphere to Y by IT (V).



Consider the magnetic flux through some closed surface,
surrounding a region where D#¢ = 0 falls.

2

Given the form of the gauge field outside the monopoles
region as

1 1
WH = —a¢ A *p + —pAH
a’e a

In fact, 8y Is time independent, gauge invariant, and also
independent of ¢ on the surface, a small variation in the
Higgs field produces no change in the flux. Thus the flux
depends only on the homotopy classes of the maps

lim ¢(7) : ST - M,

We are interested in I1,_,(M,)



If G is simply connected as well as M, then we have
[1,(G) =0 II,(G)=0

A theorem in homotopy theory tells us that:

I1,(G/H) ~ I1,(H) and I1,(G/H) ~ I1,(H)

The first isomorphism tells us that assuming M is connected
IS equivalent to assuming that H is connected.

The second isomorphism provides a description of the
magnetic charges in terms of the first homotopy group of H
since ¢ : 2 — M, defines an element of 11,(M,) under the
assumption that IT,(M,) = 0



t Hooft-Polyakov monopoles

The gauge groupis G = SO(3)
Then we have the little group
H=50Q2)~U(l)
And the manifold of Higgs vacuum M, = SO(3)/U(1) ~ S?

Thus in 3+1dimensions, M, (G/H)=1L,8*=2Z

The equivalence classes are characterized by the number of times
N, that ¢(r) covers the sphere M, as r covers a two-dimensional
sphere once. The number N determine the homotopy class.



Charge quantization

 SO(3) is not simply connected, but we can replace it by SU(2) to
obtain a simply connected group. Then the homotopically distinct
closed paths in H=U(1) are

h(s) = exp(ig| B-dS)=e'8
Jy

e It is obtained when we solve the equation D¥¢ = OQwith the
parameterized surface ) as the unit square with its perimeter
identified to a single point r, € 2

> = {r(s,f) : s € [0,1], t € [0,1])

e The closure requires that 4(0) = h(1) = 1and leads to the Dirac
quantization condition gg¢ =2zN, N € Z
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