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Dirac Monopoles
• A magnetic monopole has the vector potential as:


• Then we have


• There are singularities at θ=0 and θ=π correspond to 
Dirac string. Moving in a circle around string, particle 
wave function picks up a phase exp{-iqg}. The Dirac string 
is undetectable and so we require that the phase factor 
must be equal to 1, which lead to the Dirac quantization 
contition
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General gauge theory formalism

• Consider the faithful representation of G, given by D(g) 
and a scalar field     which transforms under the 
representation


• g is a function of spacetime: g=g(x), under such 
transformations:


• To keep it covariant, we introduce gauge fields       and 
associate with them a matrix in the Lie algebra of G:

ϕ

ϕ → D(g)ϕ

∂μϕ → D(g)∂μϕ + ∂μD(g)ϕ

Wμ
a

Wμ = Wμ
a Ta ∈ L(G)



• If we specify the gauge transformation as


• Then the modified covariant derivative is given by


• If we define the antisymmetric gauge field tensor as


• We will find that                              and consequently

Wμ → gWμg−1 +
i
e

(∂μg)g−1

Dμϕ = ∂μϕ + ieD(Wμ)ϕ → D(g)Dμϕ

Gμν = Gμν
a Ta = ∂μWν − ∂νWμ + ie[Wμ, Wν]

[Dμ, Dν]ϕ = ieD(Gμν)ϕ

Gμν → gGμνg−1



• Since we assume the group G is compact, we can always 
arrange that


• Then we will find the field tensor is invariant under the 
action of the gauge group

Tr(TaTb) = κδab
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The structure of the Higgs vacuum

• Consider the Lagrangian density


• Where V(φ) is invariant under the action of gauge group G


• At any given time we expect the Lagrangian to satisfy the 
following equations everywhere in space apart from a 
finite number of compact regions which we call 
monopoles, this is the Higgs vacuum.

L = −
1
4

Gμν
a Gaμν + (Dμϕ)†(Dμϕ) − V(ϕ)

V(D(g)ϕ) = V(ϕ)

V(ϕ) = 0, Dμϕ = 0



• We use      to denote the manifold of Higgs field φ which 
minimize the potential function


•  A non-trivial vacuum manifold consists of more than one 
point, forms an orbit of G. Any two points which can be 
related by an element of G are said to be on the same orbit.


• Here we assume that      consists of a single orbit of the 
gauge group G, that is to say, given


•

M0

M0 = {ϕ : V(ϕ) = 0}

ϕ1 = D(g)ϕ2

M0

ϕ1, ϕ2 ∈ M0, ∃g12 ∈ G, such that ϕ1 = D(g12)ϕ2



Little group

• For representation D of gauge group G, the little group of a 
point            is defined as


• Lemma: Representations belonging to the same orbit have 
their little groups interrelated as


• Thus for single orbit H is isomorphic for different φ, if we 
choose any point              we will have               and the 
manifold structure is only determined by G.

ϕ ∈ M0

Hϕ = {h ∈ G : D(h)ϕ = ϕ}

H = g−1H′�g

ϕ0 ∈ M0 H = Hϕ0



• In fact,


• Prove: Associate a point φ with         via                , the 
elements    ,     will be associated with the same φ if and 
only if     and      belong to the same right coset of H in G, 
That is,                      , or equivalently,


• Thus we may identify      with the right coset space             
which means once H has been determined the other 
details associated with the Higgs field may be ignored.

M0 = G/H

g ∈ G ϕ = D(g)ϕ0

g−1
1 g2 ∈ HD(g−1

1 g2)ϕ0 = ϕ0

g1 g2
g1 g2

M0 G/H



Homotopy class

• Consider a compact monopole region M, surrounded by a 
large region S, in which the equations defining the Higgs 
vacuum hold to a good approximation. 


• If            then  


• This implies that if we consider a closed surface     , 
enclosing M once, then

r ∈ S ϕ(r) ∈ M0

ϕ : Σ → M0

Σ



• As time evolves, if the map varies continuously with time 
we called such change a homotopy, and                   are 
said to define homotopic maps.


• Generally, two continuous maps f_1 and f_2 between 
topological spaces X and Y are homotopic, if there exists 
F sending                                               , such that 


• Thus F maps                        and constitutes a continuous 
deformation of the map f_1 into the map f_2, we denote 
such classes of maps from n-sphere to Y by         .

ϕ(r, t1), ϕ(r, t2)

(x, t) → F(x, t) ∈ Y (t ∈ [0,1] and x ∈ X)

F(x,0) = f1(x) and F(x,1) = f2(x)

X × [0,1] → Y

Πn(Y )



• Consider the magnetic flux through some closed surface, 
surrounding a region where              fails.


• Given the form of the gauge field outside the monopoles 
region as


• In fact,      is time independent, gauge invariant, and also 
independent of      on the surface, a small variation in the 
Higgs field produces no change in the flux. Thus the flux 
depends only on the homotopy classes of the maps


• We are interested in                      

gΣ = ∫Σ
B ⋅ dS

Dμϕ = 0

Wμ =
1

a2e
ϕ ∧ ∂μϕ +

1
a

ϕAμ

ϕ

lim
r→∞

ϕ( ⃗r ) : Sd−1 → M0
Πd−1(M0)

gΣ



• If G is simply connected as well as M, then we have


• A theorem in homotopy theory tells us that:


• The first isomorphism tells us that assuming M is connected 
is equivalent to assuming that H is connected.


• The second isomorphism provides a description of the 
magnetic charges in terms of the first homotopy group of H 
since                    defines an element of               under the 
assumption that 

Π0(G) = 0 Π1(G) = 0

Π1(G/H) ≃ Π0(H) and Π2(G/H) ≃ Π1(H)

Π2(M0)ϕ : Σ → M0
Π1(M0) = 0



’t Hooft-Polyakov monopoles

• The gauge group is


• Then we have the little group


• And the manifold of Higgs vacuum 


• Thus in 3+1dimensions, 


• The equivalence classes are characterized by the number of times 
N, that φ(r) covers the sphere M0  as r covers a two-dimensional 
sphere once. The number N determine the homotopy class.

G = SO(3)

H = SO(2) ≃ U(1)

M0 = SO(3)/U(1) ≃ S2

Πd−1(G/H) = Π2(S2) = Z



Charge quantization

• SO(3) is not simply connected, but we can replace it by SU(2) to 
obtain a simply connected group. Then the homotopically distinct 
closed paths in H=U(1) are


• It is obtained when we solve the equation                 with the 
parameterized surface     as the unit square with its perimeter 
identified to a single point 


• The closure requires that                             and leads to the Dirac 
quantization condition 

h(s) = exp(iq∫Σ
B ⋅ dS) = eiqg

h(0) = h(1) = 1

Dμϕ = 0
Σ

Σ = {r(s, t) : s ∈ [0,1], t ∈ [0,1]}

qg = 2πN, N ∈ Z

r0 ∈ Σ
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