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There are numerous relations among the generators in the defining and adjoint repre-
sentations of the SU(N) Lie algebra, henceforth denoted by su(N). These include Casimir
operators, formulae for traces of products of generators, etc. Due to the existence of the com-
pletely symmetric tensor dabc that arises in the study of su(N), one can also consider relations
that involve the adjoint representation matrix, (Da)bc = dabc. A few relations special to the
case of N = 3 are also highlighted.

1 The defining representation of the SU(N) Lie algebra

We employ the physicist’s convention, where the N2 − 1 generators in the defining represen-
tation of su(N), denoted by T a, serve as a basis for the set of traceless hermitian N × N

matrices. The generators satisfy the commutation relations,

[T a , T b] = ifabcT
c , where a, b, c = 1, 2, . . . , N2 − 1. (1)

In particular
TrT a = 0 . (2)

We employ the following normalization convention for the generators in the defining represen-
tation of su(N),

Tr(T aT b) = 1

2
δab . (3)

In this convention, the fabc are totally antisymmetric with respect to the interchange of any
pair of indices.

Consider a d-dimensional irreducible representation, Ra of the generators of su(N). The
quadratic Casimir operator, C2 ≡ RaRa, commutes with all the su(N) generators.1 Hence
in light of Schur’s lemma, C2 is proportional to the d × d identity matrix. In particular, the
quadratic Casimir operator in the defining representation of su(N) is given by

T aT a = CF1 , (4)

where 1 is the N ×N identity matrix. To evaluate CF , we take the trace of eq. (4) and make
use of Tr1 = N . Summing over a, we note that δaa = N2 − 1. Using the normalization of the
generators specified in eq. (3), it follows that 1

2
(N2 − 1) = NCF . Hence,

2

CF =
N2 − 1

2N
. (5)

1It is straightforward to show that C2 commutes with all the generators of su(N). In particular, using the
commutation relations, [Ra , Rb] = ifabcR

c,
[

RaRa , Rb
]

= Ra
[

Ra , Rb
]

+
[

Ra , Rb
]

Ra = ifabc(RaRc +RcRa) = 0 ,

due to the antisymmetry of fabc under the interchange of any pair of indices.
2In the older literature, the defining representation is (inaccurately) called the fundamental representation.

It is for this reason that the Casimir operator in the defining representation is often denoted by CF .
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Next we quote an important identity involving the su(N) generators in the defining rep-
resentation,

T a
ijT

a
kℓ =

1

2

(

δiℓδjk −
1

N
δijδkℓ

)

, (6)

where the indices i, j, k and ℓ take on values from 1, 2, . . . , N . To derive eq. (6), we first note
that any N × N complex matrix M can be written as a complex linear combination of the
N ×N identity matrix and the T a,

M = M01+MaT
a . (7)

This can be regarded as a completeness relation on the vector space of complex N × N

matrices. One can project out the coefficient M0 by taking the trace of eq. (7). Likewise, one
can project out the coefficients Ma by multiplying eq. (7) by T b and then taking the trace of
the resulting equation. Using eqs. (2) and (3), it follows that

M0 =
1

N
TrM , Ma = 2Tr(MT a) . (8)

Inserting these results back into eq. (7) yields

M =
1

N
(TrM)1 + 2Tr(MT a)T a . (9)

The matrix elements of eq. (9) are therefore

Mij =
1

N
Mkkδij + 2MℓkT

a
kℓT

a
ij , (10)

where the sum over repeated indices is implicit. We can rewrite eq. (10) in a more useful form,

δiℓδjkMℓk =

(

1

N
δijδkℓ + 2T a

ijT
a
kℓ

)

Mℓk . (11)

It follows that
[

T a
ijT

a
kℓ −

1

2

(

δiℓδjk −
1

N
δijδkℓ

)]

Mℓk = 0 . (12)

This equation must be true for any arbitrary N × N complex matrix M . It follows that the
coefficient of Mℓk in eq. (12) must vanish. This yields the identity states in eq. (6). The proof
is complete.

Many important identities can be obtained from eq. (6). For example, multiplying eq. (6)
by T b

jk and summing over j and k yields

T aT bT a = −
1

2N
T a , (13)

after employing eq. (2). If we now multiply eq. (13) by T c and take the trace of both sides of
the resulting equation, then the end result is

Tr(T aT bT aT c) = −
1

4N
δbc . (14)

after using eq. (3). A more general expression for the trace of four generators (of which eq. (14)
is a special case) is given in Appendix A.
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2 Introducing the symmetric third rank tensor dabc

In su(N), one can also define a totally symmetric third rank tensor called dabc via the relation,

T aT b =
1

2

[

1

N
δab1+ (dabc + ifabc)T

c

]

, (15)

where 1 is the N × N identity matrix. Combining eqs. (1) and (15) yields the following
anticommutation relation,

{

T a , T b
}

≡ T aT b + T bT a =
1

N
δab1+ dabcT

c , (16)

Using eqs. (3) and (16), one obtains an explicit expression,

dabc = 2Tr
[{

T a , T b
}

T c
]

, (17)

which can be taken as the definition of the dabc. It then follows that daac = 0 (where a sum
over the repeated index a is implicit). Indeed, since dabc is a totally symmetric tensor, it
follows that daca = dcaa = 0.

The case of su(2) provides the simplest example. In this case, we identify T a = 1

2
σa, where

the σa (for a = 1, 2, 3) are the well-known Pauli matrices, and fabc = ǫabc are the components
of the Levi-Civita tensor. It is a simple matter to check that in the case of su(2), we have
dabc = 0. In contrast, the dabc are generally non-zero for N ≥ 3.

Consider the trace identity obtained by multiplying eq. (15) by T c and taking the trace.
In light of eqs. (2) and (3),

Tr(T aT bT c) = 1

4
(dabc + ifabc) . (18)

It then follows that

fabd Tr(T
aT bT c) = 1

4
ifabcfabd , (19)

dabdTr(T
aT bT c) = 1

4
dabcdabd . (20)

In obtaining eqs. (19) and (20), we used the fact that dabc is symmetric and fabc is antisym-
metric under the interchange of any pair of indices, which implies that

fabcdabd = 0 . (21)

To evaluate the products fabcfabd and dabcdabd, we proceed as follows. Using eqs. (1) and (16),

fabd Tr(T
aT bT c) = −iTr

(

[T b , T d]T bT c
)

= −iTr(T bT dT bT c) + iTr(T dT bT bT c) , (22)

dabdTr(T
aT bT c) = Tr

[(

{T b , T d} −
1

N
δbd1

)

T bT c

]

= Tr(T bT dT bT c) + Tr(T dT bT bT c)−
1

N
Tr(T dT c) . (23)
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The traces are easily evaluated using eqs. (3)–(5) and (14), and we end up with

fabd Tr(T
aT bT c) = 1

4
iNδcd , (24)

dabdTr(T
aT bT c) =

(

N2 − 4

4N

)

δcd . (25)

Comparing eqs. (24) and (25) with eqs. (19) and (20), we conclude that,3

fabcfabd = Nδcd , (26)

dabcdabd =

(

N2 − 4

N

)

δcd . (27)

Consider a d-dimensional irreducible representation, Ra of the generators of su(N). The
cubic Casimir operator C3 ≡ dabcR

aRbRc, commutes with all the su(N) generators. Hence
in light of Schur’s lemma, C3 is proportional to the d × d identity matrix. In particular, the
cubic Casimir operator in the defining representation of su(N) is given by

dabcT
aT bT c = C3F1 . (28)

To evaluate C3F , we multiply eq. (15) dabd to obtain

dabcT
aT b =

N2 − 4

2N
T c , (29)

after using eqs. (26) and (27). Multiplying the above result by T c and employing eq. (4) yields

dabcT
aT bT c =

N2 − 4

2N
CF1 . (30)

Hence, using eqs. (5) and (28), we obtain

C3F =
(N2 − 1)(N2 − 4)

4N2
.

For completeness, we note the following result that resembles eq. (29),

fabcT
aT b = 1

2

(

{T a , T b}+ [T a , T b]
)

= 1

2
fabc[T

a , T b] = 1

2
ifabcfabdT

d = 1

2
iNT c ,

after employing eq. (24). Hence, in light of eqs. (4) and (5) it follows that

fabcT
aT bT c = 1

2
iNCF1 = 1

4
i(N2 − 1)1 .

Indeed, in any irreducible representation of su(N), a similar analysis yields

fabcR
aRbRc = 1

2
iNC2 , (31)

where C2 ≡ RaRa is the quadratic Casimir operator in representation R. Hence, fabcR
aRbRc

is proportional to C2 and thus is not an independent Casimir operator.4

3Note that eqs. (24), (25) and (21) are equivalent to eqs. (45) and (46), respectively.
4It may seem that eq. (30) implies that the cubic Casimir operator is proportional to the quadratic Casimir

operator. However, the derivation of eq. (30) relies on eq. (15), which only applies to the generators of su(N)
in the defining representation. For an arbitrary d-dimensional irreducible representation of su(N), C2 and C3

are generically independent.
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3 Matrices of the adjoint representation of SU(N)

We now introduce the generators of su(N) in the adjoint representation, which will be hence-
forth denoted by F a. The F a are (N2 − 1) × (N2 − 1) antisymmetric matrices, since the
dimension of the adjoint representation is equal to the number of generators of su(N). Ex-
plicitly, the matrix elements of the adjoint representation generators are determined by the
structure constants,

(F a)bc = −ifabc . (32)

It is also convenient to define a set of (N2 − 1)× (N2 − 1) traceless symmetric matrices

(Da)bc = dabc , (33)

where the dabc is defined by eq. (17). Since dabb = 0 it follows that TrDa = 0. The properties
of the F a and Da matrices have been examined in Refs. [1, 2].

The F a satisfy the commutation relations of the su(N) generators,

[F a , F b] = ifabcF
c , (34)

which is equivalent to the Jacobi identity,

fabefecd + fcbefaed + fdbeface = 0 . (35)

Likewise, there is a second commutation relation of interest,

[F a , Db] = [Da , F b] = ifabcD
c , (36)

which is equivalent to the two identities,

fabedcde + facedbde + fadedbce = 0 , (37)

fabedcde + fcbedade + fdbedace = 0 . (38)

The relations,
F aDb + F bDa = DaF b +DbF a = dabcF

c , (39)

are also noteworthy. Combining eqs. (36) and (39) yields,

F aDb +DaF b = dabcF
c + ifabcD

c . (40)

The expression for the commutator [Da , Db] is more complicated,

[

Da , Db
]

cd
= ifabe(F

e)cd −
2

N

(

δacδbd − δadδbc

)

, (41)

which is equivalent to the identity,

fabefcde =
2

N

(

δacδbd − δadδbc

)

+ dacedbde − dbcedade . (42)
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Interchanging b ↔ c and subtracting, the resulting expression can be rewritten as

(F aF b +DaDb)cd =
2

N

(

δabδcd − δacδbd

)

+ dabe(D
e)cd + ifabe(F

e)cd . (43)

Eq. (43) is equivalent to the identity,

facefbde − fabefcde =
2

N

(

δabδcd − δacδbd

)

+ dabedcde − dacedbde . (44)

The quadratic Casimir operator in the adjoint representation is

F aF a = CAI , where CA = N , (45)

and I is the (N2 − 1)× (N2 − 1) identity matrix, which is equivalent to eq. (26). Two other
similar expressions of interest are

DaDa =

(

N2 − 4

N

)

I , F aDa = 0 , (46)

which are equivalent to eqs. (27) and (21), respectively.
Using the above results, we can derive additional identities of interest. For example,

fabcF
bF c = 1

2
fabc

[

F b , F c] = 1

2
ifabcfbcdF

d = 1

2
iNF a , (47)

fabcF
bDc = 1

2
fabc

[

F b , Dc] = 1

2
ifabcfbcdD

d = 1

2
iNDa , (48)

fabcD
bDc = 1

2
fabc

[

Db , Dc] = 1

2
i

(

fabcfbcd −
4

N
δad

)

F d = i

(

N2 − 4

2N

)

F a . (49)

It then follows that

fabcF
aF bF c = 1

2
iN2I , (50)

fabcD
aF bF c = 0 , (51)

fabcD
aDbF c = 1

2
i(N2 − 4)I , (52)

fabcD
aDbDc = 0 . (53)

For completeness, we quote the analogous identities with fabc replaced by dabc. These identities
are proved in Appendix B of these notes.

dabcF
bF c = 1

2
NDa , (54)

dabcF
bDc =

(

N2 − 4

2N

)

F a , (55)

dabcD
bDc =

(

N2 − 12

2N

)

Da . (56)

6



It then follows that

dabcF
aF bF c = 0 , (57)

dabcD
aF bF c = 1

2
(N2 − 4)I , (58)

dabcD
aDbF c = 0 , (59)

dabcD
aDbDc =

(

(N2 − 4)(N2 − 12)

2N2

)

I . (60)

Note that eq. (57) implies that the cubic Casimir operator in the adjoint representation van-
ishes, i.e., dabcF

aF bF c = 0.
Finally, we quote a number of useful trace identities [1–4].

TrF a = TrDa = 0 , Tr(F aDb) = 0 , (61)

Tr(F aF b) = Nδab , Tr(DaDb) =

(

N2 − 4

N

)

δab , (62)

Tr(F aF bF c) = 1

2
iNfabc , Tr(DaF bF c) = 1

2
Ndabc , (63)

Tr(DaDbF c) = i

(

N2 − 4

2N

)

fabc , Tr(DaDbDc) =

(

N2 − 12

2N

)

dabc . (64)

Additional identities involving traces of four generators can also be derived. Ref. [4] provides
the following results,5

Tr(F aF bF cF d) = δadδbc +
1

2
(δabδcd + δacδbd) +

1

4
N(fadefbce + dadedbce) , (65)

Tr(F aF bF cDd) = 1

4
iN(dadefbce − fadedbce) , (66)

Tr(F aF bDcDd) = 1

2
(δabδcd − δacδbd) +

(

N2 − 8

4N

)

fadefbce +
1

4
Ndadedbce , (67)

Tr(F aDbF cDd) = −1

2
(δabδcd − δacδbd) +

1

4
N(fadefbce + dadedbce) , (68)

Tr(F aDbDcDd) =
2i

N
fadedbce + i

(

N2 − 8

4N

)

fabedcde +
1

4
iNdabefcde , (69)

Tr(DaDbDcDd) =

(

N2 − 4

N2

)

δadδbc +

(

N2 − 8

2N2

)

δabδcd +
1

2
δacδbd +

1

4
Nfadefbce

+

(

N2 − 16

4N

)

dadedbce −
4

N
dabedcde . (70)

Alternative expressions for eqs. (66)–(70) are given in Appendix C [3].
As a check of eq. (65), let us set a = c and sum over a. After employing eqs. (26) and (27)

and relabeling d by c, we obtain

Tr(F aF bF aF c) = 1

2
N2δbc . (71)

5In Ref. [4], the coefficient of iNdabefcde in eq. (69) is incorrectly given by 1

2
.
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Alternatively, one can obtain the above result directly by using eqs. (26), (45), (62) and (63)
to compute

Tr(F aF bF aF c) = Tr
(

(ifabdF
d + F bF a)F aF c

)

= ifabd Tr(F
dF aF c) + Tr(F bF aF aF c)

= ifabd
(

1

2
iNfdac

)

+N2δbc =
1

2
N2δbc , (72)

which confirms the result of eq. (71). Similarly, the results of eqs. (66)–(70) can also be
checked by multiplication by either a Kronecker delta, fabc or dabc and then employing the
trace formulae previously derived.

Various applications of the identities given in this section can be found in a paper by
Roger Cutler and Dennis Sivers [5]. Indeed, many of these identities are also reproduced in
Appendix B of Ref. [5] (after correcting the latter for some obvious typographical errors).

4 Two additional identities for N = 3

Two additional identities, which were first presented in Ref. [6], are special to the case ofN = 3
and do not generalize to arbitrary N . These identities can be derived from the characteristic
equation of a general element of the su(3) Lie algebra [2, 6],

{

F a , F b
}

cd
= 3dabe(D

e)cd + δabδcd − δacδbd − δadδbc , (73)
{

Da , Db
}

cd
= −dabe(D

e)cd +
1

3

(

δabδcd + δacδbd + δadδbc
)

. (74)

These two identities can be rewritten as

3dabedcde − facefbde − fadefbce = δacδbd + δadδbc − δabδcd , (75)

dabedcde + dacedbde + dadedbce =
1

3

(

δabδcd + δacδbd + δadδbc
)

. (76)

Combining eqs. (34) and (73) then yields,

(F aF b)cd =
1

2
ifabe(F

e)cd +
3

2
dabe(D

e)cd +
1

2

(

δabδcd − δacδbd − δadδbc
)

. (77)

Likewise, combining eqs. (41) and (74) yields,

(DaDb)cd =
1

2
ifabe(F

e)cd −
1

2
dabe(D

e)cd +
1

6

(

δabδcd − δacδbd
)

+ 1

2
δadδbc . (78)

Note that the sum of eqs. (77) and (78) yields the N = 3 version of eq. (43). Unfortunately,
there are no separate analogs of eqs. (77) and (78) for N 6= 3.
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APPENDIX A: Traces of four generators in the

defining representation of SU(N)

The trace of a product of four generators in the defining representation also involves the
symmetric tensor dabc introduced in Section 2. Applying eq. (15) twice, and taking the trace
with the help of eq. (3) yields

Tr(T aT bT cT d) =
1

4N
δabδcd +

1

8

(

dabedcde − fabefcde + ifabedcde + ifcdedabe
)

.

It is convenient to employ eqs. (38) and (42) of Section 3 to produce a more symmetric version,

Tr(T aT bT cT d) =
1

4N

(

δabδcd − δacδbd + δadδbc
)

+ 1

8

(

dabedcde − dacedbde + dadedbce
)

+1

8
i
(

dabefcde + dacefbde + dadefbce
)

. (79)

A nice check of eq. (79) is to rederive eq. (14) by setting a = c and summing over a.

APPENDIX B: Proof of eqs. (54)–(56)

First, we note that eqs. (54)–(56) are equivalent to the last three trace identifies of eqs. (63)
and (64),

Tr(DaF bF c) = dade(F
dF e)bc , (80)

Tr(DaDbF c) = dade(F
dDe)bc , (81)

Tr(DaDbDc) = dade(D
dDe)bc , (82)

after using eqs. (32) and (33). Multiplying eq. (40) on the left by F e and taking a trace yields

Tr(F eF aDb) = 1

2
Ndabe , (83)

in light of eqs. (61) and (62). Likewise, multiplying eq. (40) on the right by De and taking a
trace yields

Tr(F aDbDe) =
i(N2 − 4)

2N
fabe . (84)

Multiplying eq. (43) on the right by (Df)de and taking the trace (by setting c = e and summing
over e) yields,

Tr(F aF bDf +DaDbDf) =

(

N2 − 6

N

)

dabf . (85)

Finally, we use the result of eq. (83) to obtain

Tr(DaDbDf) =

(

N2 − 12

2N

)

dabf . (86)
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APPENDIX C: Traces of adjoint representation matrices revisited

The traces of products of four matrices (either F a or Da) in the adjoint representation are
given in eqs. (65)–(70). It is sometime convenient to eliminate the product fadefbce in favor of
δab and dabc, etc., by using eq. (42). The following results were obtained in Ref. [3],

Tr(F aF bF cF d) = δabδcd + δadδbc +
1

4
N
(

dabedcde − dacedbde + dadedbce
)

,

Tr(F aF bF cDd) = 1

4
iN(dabefcde + fabedcde) ,

Tr(F aF bDcDd) =

(

N2 − 4

N2

)

(

δabδcd − δacδbd
)

+

(

N2 − 8

4N

)

(

dabedcde − dacedbde
)

+ 1

4
Ndadedbce ,

Tr(F aDbF cDd) = 1

4
N
(

dabedcde − dacedbde + dadedbce
)

,

Tr(F aDbDcDd) = i

(

N2 − 12

4N

)

fabedcde +
i

N

(

fadedbce − facedbde
)

+ 1

4
iNdabefcde ,

Tr(DaDbDcDd) =

(

N2 − 4

N2

)

(

δabδcd + δadδbc
)

+

(

N2 − 16

4N

)

(

dabedcde + dadedbce
)

− 1

4
Ndacedbde .

Note that the second equation above is consistent with eq. (66) in light of eq. (36), and the
fifth equation above is consistent with eq. (69) in light of eq. (37).
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